FUZZY DATABASE
MODELINGWITH XML

by

Zongmin Ma

@ Springer

Fuzzy Database
Modeling with XML

ADVANCES IN DATABASE SYSTEMS

Series Editor

Ahmed K. EImagarmid

Purdue University
West Lafayette, IN 47907

Other books in the Series:

MINING SEQUENTIAL PATTERNS FROM LARGE DATA SETS, Wei Wang
and Jiong Yang; ISBN 0-387-24248-1; e-ISBN 0-387-24249-X

ADVANCED SIGNATURE INDEXING FOR MULTIMEDIA AND WEB
APPLICATIONS, Yannis Manolopoulos, Alexandros Nanopoulos, Eleni
Tousidou; ISBN: 1-4020-7425-5

ADVANCES IN DIGITAL GOVERNMENT, Technology, Human Factors, and
Policy, edited by William J. Mclver, Jr. and Ahmed K. Elmagarmid; ISBN: 1-
4020-7067-5

INFORMATION AND DATABASE QUALITY, Mario Piattini, Coral Calero and
Marcela Genero; ISBN: 0-7923- 7599-8

DATA QUALITY, Richard Y. Wang, Mostapha Ziad, Yang W. Lee: ISBN: 0-7923-
7215-8

THE FRACTAL STRUCTURE OF DATA REFERENCE: Applications to the
Memory Hierarchy, Bruce McNutt; ISBN: 0-7923-7945-4

SEMANTIC MODELS FOR MULTIMEDIA DATABASE SEARCHING AND
BROWSING, Shu-Ching Chen, R.L. Kashyap, and Arif Ghafoor;, ISBN: 0-7923-
7888-1

INFORMATION BROKERING ACROSS HETEROGENEOUS DIGITAL DATA:
A Metadata-based Approach, Vipul Kashyap, Amit Sheth; ISBN: 0-7923-7883-0

DATA DISSEMINATION IN WIRELESS COMPUTING ENVIRONMENTS,
Kian-Lee Tan and Beng Chin Ooi; ISBN: 0-7923-7866-0

MIDDLEWARE NETWORKS: Concept, Design and Deployment of Internet
Infrastructure, Michah Lerner, George Vanecek, Nino Vidovic, Dad Vrsalovic;
ISBN: 0-7923-7840-7

ADVANCED DATABASE INDEXING, Yannis Manolopoulos, Yannis Theodoridis,
Vassilis J. Tsotras; ISBN: 0-7923-7716-8

MULTILEVEL SECURE TRANSACTION PROCESSING, Vijay Atluri, Sushil
Jajodia, Binto George ISBN: 0-7923-7702-8

FUZZY LOGIC IN DATA MODELING, Guoging Chen ISBN: 0-7923-8253-6

INTERCONNECTING HETEROGENEOUS INFORMATION SYSTEMS, Athman
Bouguettaya, Boualem Benatallah, Ahmed Elmagarmid ISBN: 0-7923-8216-1

FOUNDATIONS OF KNOWLEDGE SYSTEMS: With Applications to Databases
and Agents, Gerd Wagner ISBN: 0-7923-8212-9

DATABASE RECOVERY, Vijay Kumar, Sang H. Son ISBN: 0-7923-8192-0

Fuzzy Database
Modeling with XML

by

Zongmin Ma
Université de Sherbrooke
Canada

@ Springer

Zongmin Ma

Département de Mathématiques et Informatique
Université de Sherbrooke

Canada

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available
from the Library of Congress.

Fuzzy Database Modeling with XML
by
Zongmin Ma, Université de Sherbrooke, Canada

Advances in Database Systems Volume 29
ISBN 0-387-24248-1 e-ISBN 0-387-24249-X

Printed on acid-free paper.

© 2005 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or
in part without the written permission of the publisher (Springer
Science+Business Media, Inc., 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as
an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed in the United States of America.
987654321 SPIN 11054351, 11374176

springeronline.com

To
my parents
and to

my wife Li, my daughter Ruizhe, and my son Jiaji

This book is dedicated to my younger brother Zonghua.

TABLE OF CONTENTS

DEDICATION v
TABLE OF CONTENTS vii
LIST OF FIGURES Xiil
LIST OF TABLES xvii
FOREWORD XiX
PREFACE XXxi
ACKNOWLEDGEMENTS xxiii
PART1 BACKGROUND INFORMATION 1
CHAPTER 1 CONCEPTUAL DATA MODELING 3
1.1. Entity-Relationship (ER) and Enhanced ER (EER) Models 3
1.1.1. ER Model 4
1.1.2. EER Model 7
1.2. UML Class Model 8
1.2.1. Class 9
1.2.2. Relationship 10
1.3. XML 12
1.3.1. XML Documents 12
1.3.2. XML DTD Constructs 13

1.3.3. XML Databases 16

viii Table of Contents

References 18
CHAPTER 2 LOGICAL DATABASE MODELS 21
2.1. The Relational Database Model 22
2.1.1. Attributes and Domains 22
2.1.2. Relations and Tuples 22
2.1.3. Keys 23
2.1.4. Constraints 23
2.1.5. The Relational Algebra 25
2.1.6. Relational Database Design 27
2.2. The Nested Relational Database Model 30
2.3. The Object-Oriented Database Model 31
2.3.1. Objects and Identifiers 32
2.3.2. Classes and Instances 32
2.3.3. Class Hierarchical Structure and Inheritance 33
References 33

CHAPTER 3 FUZZY SETS AND POSSIBILITY DISTRIBUTIONS

35
3.1. Imperfect Information in Database Modeling 35
3.1.1. Null Values and Partial Values 36
3.1.2. Probabilistic Values 37
3.1.3. Fuzzy Sets in Database Modeling 38
3.2. Representations of Fuzzy Sets and Possibility Distributions 38
3.3. Support, Kernel, and a-Cut of a Fuzzy Set 39
3.4. Zadeh’s Extension Principle 40
3.5. Operations on Fuzzy Sets 41
3.5.1. Set Operations of Fuzzy Sets 41
3.5.2. Arithmetic Operations of Fuzzy Sets 42
3.5.3. Relational Operations of Fuzzy Sets 42
3.5.4. Logical Operations of Fuzzy Sets 46
References 47
PARTII FUZZY CONCEPTUAL DATA MODELING 49
CHAPTER 4 THE FUZZY ER AND FUZZY EER MODELS 51
4.1. Introduction 51
4.2, The Fuzzy ER Model 52
4.2.1. Three Levels of Fuzziness in Entities, Relationships
and Attributes 52
42,2, Relationships and Constraints 55

4.3. The Fuzzy EER Model 58

Table of Contents

4.3.1. Fuzzy Attribute
4.3.2. Fuzzy Entity and Relationship
43.3. Fuzzy Generalization/Specialization
4.3.4. Fuzzy Category
4.3.5. Fuzzy Aggregation

4.4. Summary

References

CHAPTER 5 THE FUZZY UML DATA MODEL
5.1. Introduction
5.2. The Fuzzy UML Class Model
5.2.1. Fuzzy Class
5.2.2. Fuzzy Generalization
5.2.3. Fuzzy Aggregation
5.2.4. Fuzzy Association
5.2.5. Fuzzy Dependency
5.3. Summary
References

CHAPTER 6 THE FUZZY XML MODEL
6.1. Introduction
6.2. The Fuzzy XML Model
6.2.1. The Fuzziness in XML
6.2.2. The Fuzzy Representation Model
6.3. Conceptual Design of the Fuzzy XML Model with
the Fuzzy UML Model
6.3.1. Transformation of Classes
6.3.2. Transformation of Generalizations
6.3.3. Transformation of Associations
6.4. Summary
References

PART III FUZZY DATABASE MODELS

CHAPTER 7 THE FUZZY RELATIONAL DATABASES
7.1. Introduction
7.2. The Fuzzy Relational Models
7.3. Semantic Measures and Data Redundancies
7.3.1. Existing Methods
7.3.2. Semantic Relationship between Fuzzy Data
7.3.3. Evaluation of Semantic Measures
7.3.4. Fuzzy Data Redundancies and Removal

X

58
59
60
62
62
64
65

67
67
67
68
69
72
75
77
79
79

81
81
82
82
85

88
88
90
91
92
93

95

97
97
98
99
99
101
102
104

Table of Contents

7.4. Data Integrity Constraints 105
7.4.1. Fuzzy Functional Dependencies 107
7.4.2. Fuzzy Multivalued Dependencies 108
7.4.3. Reference Rules for Fuzzy Data Dependencies 109

7.5. Fuzzy Algebraic Operations 112
7.5.1. Fuzzy Relational Algebra 112
7.5.2. Properties of Fuzzy Relational Algebra 118

7.6. Flexible Query with SQL 119

7.7. Updating Fuzzy Relational Databases 123
7.7.1. Insertion Operation 123
7.7.2. Deletion Operation 128
7.7.3. Modification Operation 129

7.8. Integration of Multiple Fuzzy Relational Databases 130
7.8.1. Background 130
7.8.2. Conlflicts and Resolutions in Fuzzy Multidatabases

with Compatible Keys 133
7.8.3. Entity Identification in Fuzzy Multidatabases with
Incompatible Keys 141
7.9. Summary 145
References 146
CHAPTER 8 THE FUZZY NESTED RELATIONAL DATABASES
151

8.1. Introduction 152

8.2. The Fuzzy Nested Relational Models 152

8.3. Algeria Operations 153
8.3.1. Traditional Relational Operations 154
8.3.2. Nest and Unnest Operations 156

8.4. Summary 157

References 158

CHAPTER 9 THE FUZZY OBJECT-ORIENTED DATABASES 159

9.1. Introduction 159
9.2. Fuzzy Objects and Fuzzy Classes 160
9.2.1. Fuzzy Objects 160
9.2.2. Fuzzy Classes 161
9.2.3. Fuzzy Object-Class Relationships 162
9.3. Fuzzy Inheritance Hierarchies 167
9.4. Flexible Constraints 169
9.4.1. Constraints and Classification 170
9.4.2. Flexible Constraint Comparison 172

9.4.3. Operations on Flexible Constraints 175

Table of Contents

9.5. The Fuzzy Object-Oriented Model
9.6. Query and Operations
9.6.1. Fuzzy Product
9.6.2. Fuzzy Join
9.6.3. Fuzzy Union
9.6.4. Fuzzy Query
9.7. Summary
References

CHAPTER 10 CONCEPTUAL DESIGN OF FUZZY DATABASES

10.1. Introduction
10.2. Transformation from the Fuzzy EER Model to the Fuzzy
Nested Relational Databases
10.2.1. Transformation of Entities
10.2.2. Transformation of Relationships
10.2.3. Transformation of Generalizations
10.2.4. Transformation of Specializations
10.2.5. Transformation of Categorization
10.2.6. Transformation of Aggregations
10.3. Transformation from the Fuzzy UML Model to the Fuzzy
Object-Oriented Databases
10.3.1. Transformation of Classes
10.3.2. Transformation of Aggregations
10.3.3. Transformation of Associations
10.4. Mapping the Fuzzy XML Model into the Fuzzy Relational
Database Model
10.4.1. DTD Tree and Mapping to the Relational Database
Schema
10.4.2. Mapping the Fuzzy XML Model into the Fuzzy
Relational Database Model
10.5. Summary
References

INDEX

X1

179
180
181
181
182
182
184
185

187
187

188
189
190
191
192
193
193

194
194
196
197
199
199
201

204
204

207

LIST OF FIGURES

Figure I-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.

Figure 1-10.
Figure 1-11.
Figure 1-12.

Figure 1-13.

Figure 2-1.
Figure 2-2.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.

Figure 4-1.
Figure 4-2.

ER Diagram Notations

EER Diagram of the Specialization

EER Diagram of the Category

EER Diagram of the Aggregation

The Class Icon of the UML

An Aggregation Relationship in the UML

A Generalization Relation in the UML

An Association Relation in UML

A Dependency Relationship in the UML

Sales Order XML Document

The DTD of the XML Document in Figure 1-10
Transformation from Conceptual Data Models to XML
DTD

The Document-Centric XML Document of Product
Description

Database Design Process
Normal Forms Based on Functional Dependencies

Support, Kernel, and o-Cut of Fuzzy Sets

Membership Function of the Fuzzy Number "close to Y"
Membership Function of the Fuzzy Number "at least Y"
Membership Function of the Fuzzy Number "at most Y"

A Simple ER Data Model
The Fuzzy ER Diagram Notations with the First Level
of Fuzziness

=N Be

10
11
11
11
13
14
15
17

28
29

40

45
46

52

55

Xiv

Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.

Figure 4-7.
Figure 4-8.
Figure 4-9.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.

Figure 6-1.
Figure 6-2.
Figure 6-3.

Figure 6-4.

Figure 6-5.

Figure 7-1.
Figure 7-2.
Figuyre 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.

Figure 7-8.
Figure 7-9.

Figure 7-10.

Figure 7-11.

List of Figures

The Fuzzy ER Diagram of the Participation Constraints 56

Fuzzy Cardinality Ratios
Attributes in the Fuzzy EER Model

57
58

Entity and Relationship Types with the First Level of

Fuzziness in Fuzzy EER Model

59

Entity and Relationship Types with the Second Level of

Fuzziness in Fuzzy EER Model

59

Fuzzy EER Diagram Notations of Specialization,

Category, and Aggregation
A Simple Fuzzy EER Data Model

A Fuzzy Class in the Fuzzy UML

63
64

69

A Fuzzy Generalization Relationship in the Fuzzy UML 72
A Fuzzy Aggregation Relationship in the Fuzzy UML 74
Fuzzy Association Relationships in the Fuzzy UML 75
A Fuzzy Dependency Relationship in the Fuzzy UML 78

A Fuzzy UML Data Model

78

A Fragment of an XML Document with Fuzzy Data 84
The DTD of the Fuzzy XML Document in Figure 6-1 87
Transformation of the Classes in the Fuzzy UML to the

Fuzzy XML 89
Transformation of the Generalizations in the Fuzzy UML

to the Fuzzy XML 91
Transformation of the Associations in the Fuzzy UML

to the Fuzzy XML 92
A Resemblance Relation 103
Resemblance Relation on Attribute X 107
Resemblance Relation on Afttribute Y 108
Resemblance Relation on Attribute Age 112
Insertion Process in the Fuzzy Relational Databases 127

Fuzzy Relations with Membership Degree Conflicts 134
Fuzzy Relations with Attribute Value Conflicts in

Identical Attribute Domains 134
Fuzzy Relations with Attribute Domain Conflicts 136
Integrated Fuzzy Relations After Resolving Membership
Degree Conflicts 138
Integrated Fuzzy Relation After Resolving Attribute

Value Conflicts in Identical Attribute Domains 139
Fuzzy Attribute Value Conversion via One-to-One

Mapping 140

List of Figures XV

Figure 7-12. Fuzzy Attribute Value Conversion via Many-to-One

Mapping 140
Figure 7-13. Fuzzy Attribute Value Conversion via One-to-Many

Mapping 141
Figure 7-14. Fuzzy Database Relations with Incompatible Keys for

Integration 144
Figure 9-1. Equivalence and Inclusion Relationships of the Flexible

Constraints 172
Figure 9-2. Three Flexible Constraints Represented by Fuzzy

Relations 174
Figure 9-3. Two Flexible Constraints Represented by Fuzzy

Relations 174
Figure 9-4. Projection Operation on the Flexible Constraint 175
Figure 9-5. The Union and Difference Operations on the Flexible

Constraints 177

Figure 9-6. Three Flexible Constraints for Combination Operation 178
Figure 9-7. Conjunctive and Disjunctive Combination Operations

on the Flexible Constraints 178
Figure 9-8. Cartesian Product Operation on the Flexible Constraints 179

Figure 10-1. Transformation of the Entities in the Fuzzy EER to the

Fuzzy Nested Relational Databases 189
Figure 10-2. Transformation of the Relationships in the Fuzzy EER

to the Fuzzy Nested Relational Databases 190
Figure 10-3. Transformation of the Generalizations in the Fuzzy EER

to the Fuzzy Nested Relational Databases 191
Figure 10-4. Transformation of the Specializations in the Fuzzy EER

to the Fuzzy Nested Relational Databases 192
Figure 10-5. Transformation of the Aggregations in the Fuzzy EER

to the Fuzzy Nested Relational Databases 193
Figure 10-6. Transformation of the Classes in the Fuzzy UML to the

Fuzzy Object-Oriented Databases 195
Figure 10-7. Transformation of the Subclasses in the Fuzzy UML to

the Fuzzy Object-Oriented Databases 196
Figure 10-8. Transformation of the Aggregations in the Fuzzy UML

to the Fuzzy Object-Oriented Databases 197
Figure 10-9. Transformation of the Associations in the Fuzzy UML

to the Fuzzy Object-Oriented Databases 198
Figure 10-10. A Simple DTD Tree 200

Figure 10-11. The Relational Schema Created by the DTD Tree in
Figure 10-10 201

XVvi List of Figures

Figure 10-12. A Simple Fuzzy DTD Tree 202
Figure 10-13. The Fuzzy Relational Schema Created by the Fuzzy DTD
Tree in Figure 10-12 204

LIST OF TABLES

Table 7-1. Fuzzy Relation Instance r 107
Table 7-2. Fuzzy Relation Instance s 108
Table 7-3. Fuzzy Relation » 112
Table 7-4. Fuzzy Relation s 112
Table 7-5. The Union Operation 7 U s 113
Table 7-6. The Difference Operation » U s 113
Table 7-7. Fuzzy Relation r 114
Table 7-8. Selection Operation ODept = "IS" A Age ~ "{1.0/25,,0.9/26, 0.3/27}" (}") 115
Table 7-9. Projection Operation Ipep, ager (#) 115
Table 7-10. Fuzzy Relation » 116
Table 7-11. Fuzzy Relation s 116
Table 7-12. Natural Join Operation » D< s 116
Table 7-13. Fuzzy Relation r 117
Table 7-14. Fuzzy Relation s 117
Table 7-15. Outerunion Operation » U s 117
Table 7-16. Fuzzy Relation » 121
Table 8-1. Pressured Air Tank Relation 153
Table 8-2. Fuzzy Relation 157

Table 8-3. Fuzzy Nested Relation Iz ¢} -, x (7) 157

FOREWORD
Advances in Fuzzy Databases

Databases have evolved from early models such as hierarchical and
network approaches, through the seminal relational model as defined by
Codd [1], to current object-oriented and object-relational models that can
represent more complex data such as multi-media data. As these
developments occurred, realization of the desirability of capturing the
incompleteness and imprecision manifest in the real world became apparent.
In the relational model the use of null values was an attempt to resolve
aspects of this problem. The single null value proved to be insufficiently
powerful for this and was overloaded semantically with numerous
interpretations. Other approaches such as range values of data [2],
incompleteness models [3], and probabilistic models [4] have also been
considered.

Fuzzy database approaches were first created in the late 1970s by several
research groups [5, 6, 7]. Over the past thirty years a significant body of
research in the area of fuzzy databases / fuzzy information systems has been
developed. All database models including network, relational, entity-
relationship and object-oriented databases have been the target of extensions
utilizing fuzzy sets. Recent interests have been seen in the application of
fuzzy database approaches to problems in areas such as geographic
information systems (GIS) and the semantic web. Although there have been
edited collections of fuzzy database papers, it has been nearly 10 years since
a comprehensive monograph has appeared in this area [8] and so this volume
by Dr. Zongmin Ma satisfies the obvious need for an updating. The book is
quite self-contained as it surveys the necessary database and fuzzy set
background to appreciate the concepts involved in fuzzy database
approaches. It provides a complete coverage of fuzzy database models from
relational to nested relational and object-oriented models. The currency of

XX Foreword

the volume is shown by chapters covering fuzzy set approaches to UML and
XML and their relationships to other models. This book should provide a
standard reference for this area for a significant number of years and should
of broad interest to researchers and developers interested in the applications
of fuzzy sets in the database area.

[1] E. Codd. "A Relational Mode! for Large Shared Data Banks," Communications of the
ACM, 13, 377-387, 1970.

[21 J. Grant, "Incomplete Information in a Relational Database", Fundamenta Informaticae, 3,
363-378, 1980.

[3] W. Lipski, "On Semantic Issues Connected with Incomplete Information Databases,"
ACM Trans. Database Syst., 4, 262-296, 1979

[4] E. Wong, "A Statistical Approach to Incomplete Information in Database Systems", ACM
Trans. on Database Systems, 7, 479-488, 1982

[5] C. Giardina, "Fuzzy Databases and Fuzzy Relational Associative Processors", Technical
Report, Stevens Institute of Technology, Hoboken NJ, 1979,

[6] B. Buckles and F. Petry, "A Fuzzy Model for Relational Databases", /nt. Jour. Fuzzy Sets
and Systems, 7, 213-226, 1982.

[7]1 M. Umano, "FREEDOM-0: A Fuzzy Database System", Fuzzy Information and Decision
Processes, (eds. M. Gupta and E. Sanchez), North-Holland, Amsterdam, 339-347, 1982.

[8] F. Petry, Fuzzy Databases: Principles and Applications, Kluwer Press, 1996.

Frederick E. Petry
Center for Intelligent and Knowledge Based Systems
Tulane University, New Orleans LA USA

PREFACE

A major goal for database research has been the incorporation of
additional semantics into the data model. Classical data models often suffer
from their incapability of representing and manipulating imprecise and
uncertain information that may occur in many real world applications. Since
the early 1980°s, Zadeh’s fuzzy logic has been used to extend various data
models. The purpose of introducing fuzzy logic in database modeling is to
enhance the classical models such that uncertain and imprecise information
can be represented and manipulated. This resulted in numerous
contributions, mainly with respect to the popular relational model or to some
related form of it. It should be noticed that, however, rapid advances in
computing power have brought opportunities for databases in emerging
applications in CAD/CAM, multimedia, geographic information systems,
and etc. These applications characteristically require the modeling and
manipulation of complex objects and semantic relationships. The advances
of object-oriented databases are acknowledged outside the research and
academic worlds. It proved that the object-oriented paradigm lends itself
extremely well to the requirements. Since classical relational database model
and its extension of fuzziness do not satisfy the need of modeling complex
objects with imprecision and uncertainty, currently many researches have
been concentrated on fuzzy conceptual data models and fuzzy object-
oriented database models in order to deal with complex objects and uncertain
data together. The research on fuzzy conceptual models and fuzzy object-
oriented databases is receiving increasing attention in addition to fuzzy
relational database model. In addition, with rapid advances in network and
Internet techniques, the databases have been applied under the environment
of distributed information systems. So it is essential to integrate multiple
fuzzy database systems. And the fact that the databases are commonly

XXil Preface

employed to store and manipulate XML data puts a requirement on how to
model fuzzy information with XML and how to map fuzzy XML model to
the fuzzy databases. There have been few efforts at investigating these
issues.

The material in this book is the outgrowth of research the author has
conducted in recent years. The topics include conceptual data modeling,
logical database modeling, and conceptual design of fuzzy logical databases.
Concerning the fuzzy conceptual data modeling, in addition to the ER/EER
data models, the UML model and the XML model are extended for fuzzy
data modeling. Concerning the fuzzy logical database modeling, in addition
to data models and constraints, the query and operations in the fuzzy
databases and multiple fuzzy relational database integration are investigated.
Concerning conceptual design of fuzzy logical databases, in addition to the
mapping from the fuzzy EER model to the fuzzy nested relational databases,
the mapping from the fuzzy UML model to the fuzzy object-oriented
databases is developed. In particular, the mapping from the fuzzy UML
model to the fuzzy XML model and the mapping from the fuzzy XML
model to the fuzzy relational database model are introduced in this book.

This proposed book aims to provide a single record of current research
and practical applications in the fuzzy databases. The objective of the
proposed book is to provide state of the art information to the database
researcher and while at the same time serving the information technology
professional faced with a non-traditional application that defeats
conventional approaches. Researchers, graduate students, and information
technology professionals interested in databases and soft computing will find
this book a starting point and a reference for their study, research and
development.

ACKNOWLEDGEMENTS

My first debt of gratitude is to all of the researchers in the area of fuzzy
databases. Based on both their publications and the many discussions with
some of them, their influence on this book is profound. I have attempted to
be comprehensive in describing their efforts and hope I have not
unintentionally omitted anyone.

Much of the material presented in this book is a continuation of the initial
research work that I did during my Ph.D. studies at City University of Hong
Kong. I am grateful for the financial support from City University of Hong
Kong through a research studentship. Additionally, the assistances and
facilities of University of Saskatchewan and University of Sherbrooke,
Canada, and Oakland University and Wayne State University, USA, are
deemed important, and are highly appreciated.

I would like to express my sincere gratitude and appreciation to the
anonymous referees for their reviews of the outlines of this book.

Special thanks go to the publishing team at Kluwer Academic Publishers.
In particular to Susan Lagerstrom-Fife and to her assistant Sharon Palleschi
for their advice and help to propose, prepare and publish this book. This
book will not be completed without the support from them.

Finally T wish to thank my family for their patience, understanding,
encouragement, and support when 1 needed to devote many time in
development of this book. This book will not be completed without their
love.

Zongmin Ma
Northeastern University, China

PART 1
BACKGROUND INFORMATION

1. Conceptual Data Modeling

2. Logical Database Models

3. Fuzzy Sets and Possibility Distributions

Chapter 1
CONCEPTUAL DATA MODELING

Database systems are the key to implementing information modeling.
Information modeling in databases can be carried out at two different levels:
conceptual data modeling and logical database modeling. Correspondingly,
we have conceptual data models and logical database models for
information modeling. Generally the conceptual data models are used for
information modeling at a high level of abstraction and at the level of data
manipulation, i.e., a low level of abstraction, the logical database model is
used for information modeling. Database modeling generally starts from the
conceptual data models and then the developed conceptual data models are
mapped into the logical database models.

The logical database models will be discussed in Chapter 2. In this
chapter, we focus on the conceptual data models. We will briefly introduce
the entity-relationship (ER) model, the enhanced (extended) entity-
relationship (EER) model, and the class model of the Unified Modeling
Language (UML). In addition, with the popularity of Web-based
applications, the requirement has been put on the exchange and share of data
over the Web. The XML (eXtensiable Markup Language) provides a Web-
friendly and well-understood syntax for the exchange of data and impacts on
data definition and share on Web (Seligman and Rosenthal, 2001). So this
chapter will briefly present the XML.

1.1 Entity-Relationship (ER) and Enhanced ER (EER)
Models

The entity-relationship (ER) model was incepted by P. P. Chen (Chen,
1976) and has played a crucial role in database design and information

4 Chapter 1

systems analysis. In spite of its wide applications, the ER model suffers from
its incapability of modeling complex objects and semantic relationships. So a
number of new concepts have been introduced into the ER model by various
researchers (Dos Santos, Neuhold and Furtado, 1979; Elmasri, Weeldreyer
and Hevner, 1985; Gegolla and Hohenstein, 1991; Scheuermann, Schiffner
and Weber, 1979) to enrich its usefulness and expressiveness, forming the
notion of the enhanced entity-relationship (EER) model.

1.1.1 ER Model

The ER data model proposed by Chen (1976) can represent the real world
semantics by using the notions of entities, relationships, and attributes. ER
data schema described by the ER data model is generally represented by the
ER diagram.

Entity

Entity is a concrete thing or an abstract notion that can be distinguishable
and can be understood. A set of entities having the same characteristics is
called an entity set. A named entity set can be viewed as the description of
an entity type, while each entity in an entity set is an instance of that entity
type. For example, “Car” is an entity set. The descriptions of the features of
a car belong to the entity type, while an actual model car, for example,
“Honda Civic DX, is an instance of the car entity. Sometimes entity type is
called entity for short.

Attribute and key

The characteristics of an entity are called attributes of the entity. Each
attribute has a range of values, called a value set. Value sets are essentially
the same as attribute domains in relational databases.

Attributes in entities, however, can be not only simple attributes having
one value set but also complex attributes having several value sets, called a
composite attribute. For example, attributes “name” and “post address” of a
person are a simple attribute and a complex attribute, respectively. In
addition, an attribute can be single-valued or multivalued. For example, the
attributes "Age" and "Email address” for a person are single-valued and
multivalued attributes, respectively.

Like relational databases, a minimal set of attributes of an entity that can
uniquely identify the entity is called a key of the entity. An entity may have
more than one keys and one of them is designated as the primary key.

Relationship

1. Conceptual Data Modeling 5

Let ey, ey, ..., €, be entities. A relationship among them is represented as »
(e, e, ..., €,). The relationship is 2-ary if n = 2 and is multiple-ary if n > 2.
The set that consists of the same type of relationship is called relationship
set. A relationship set can be viewed as a relationship among entity sets. R
(E\, E,, ..., Ey)) denotes the relationship set defined on entity sets E;, E,, ...,
E.. Relationship set is the type description of the entity relationship and a
relationship among concrete entities is an instance of the corresponding
relationship set. The same entity set can appear in a relationship set several
times. A named relationship set can be viewed as the description of a
relationship type. Sometimes relationship type is called relationship for
short.

In the ER data model, a 2-ary relationship can be one-to-one, one-to-
many, or many-to-many relationships. This classification can be applied to
n-ary relationships as well. The constraint of a relationship among entities is
called cardinality ratio constraint. In the ER data model there is an
important semantic constraint called participation constraint, which
stipulates the way that entities participate in the relationship. The concept
participation degree is used to express the minimum number and maximum
number of an entity participating in a relationship, expressed as (min, max)
formally, where max > min > 0 and max > 1. When min = 0, the way an
entity participates in a relationship is called parfial participation, and is
called total participation otherwise. The cardinality ratio constraint and
participation constraint are, sometimes, referred to as the structure
constraint.

Note that relationships in the ER data model also have attributes, called
the relationship attributes.

There is a special relationship in the real world, which represents the
ownership among entities and is called the identifying relationship. Such a
relationship has two characteristics:

(a) The entity owned by another entity depends on an owning entity, and
does not exist separately, which must totally participate in
relationship.

(b) The entity owned by another entity may not be the entity key of
itself.

Because the entity owned by another entity has such characteristics, it is

called the weak entity. A weak entity can be regarded as an entity as well as
a complex attribute of its owning entity.

ER diagram

In the ER diagram, entities, attributes and relationships should be
represented, where a rectangle denotes an entity set, a rectangle with double
lines denotes a weak entity set, and a diamond denotes a relationship.

6

Rectangles and rhombus are linked by arcs and the cardinality ratios of
relationships are given. If an arc is a single line, it represents that the entity is
a partial participation. If an arc is a double line, it represents that the entity is

Chapter 1

a total participation. Participation degrees may be given if necessary.

In the ER diagram, a circle represents an attribute and it is linked to the
corresponding entity set with an edge. If an attribute is an entity key or a part
of the entity key, it is pointed out that in the ER diagram by underlining the
attribute name or adding a short vertical line on the edge. If an attribute is

complex, a tree structure will be formulated in the ER diagram.
Figure 1-1 shows ER diagram notations.

entity type

relationship
type

single-valued
attribute

multivalued
attribute

Q¢

composite attribute

week entity
type

key attribute

identifying
relationship type

—————

v—.. derived attribute

partial participation of £in R

E

=<,>

1 1

El R E2
1 n

El R E2
m n

El R E2

total participation of £ in R

cardinality ratio 1: | for £1: E2 in R

cardinality ratio 1: n for £1: E2 in R

cardinality ratio m: n for £1: £2in R

Figure 1-1. ER Diagram Notations

1. Conceptual Data Modeling 7
1.1.2 EER Model

The ER model based on entities, relationships and attributes is called the
basic ER model. In order to model the complex semantics and relationships
in the applications such as CAD/CAM, CASE, GIS, and so on, some new
concepts have been introduced in the ER model and the enhanced (extended)
entity-relationship (EER) data model is formed. In the EER model, the
following notions are introduced.

Specialization and generalization

Generalization can summarize several entity types with some common
features to an entity type and define a superclass. Specialization can divide
an entity type into several entity types according to a particular feature and
define several subclasses. For example, entity type “Automobile” is
specialized into several subclasses such as “Car” and “Truck” while entity
types “Faculty”, “Technician”, and “Research Associate” are generalized
into a superclass “Staff”.

Symbolically, a superclass E and several subclasses S, S, ..., S, satisfy
the relationship Sy U S; U ... U S, c E. Let F=; S; (1 £i<n). Then if F=
E, F is a total specialization of E, or it is a partial one. In addition, F is a
disjoint if S; N §; =@ (i #j), or it is overlapping with G=U; §; (1 <i<n). It
should be noted that a subclass may not only inherit all attributes and
relationships of its superclasses, but also have itself attributes and
relationships.

In order to represent specialization and generalization in the ER diagram,
the ER diagram should be extended and some new symbols are introduced
into the EER diagram as shown in Figure 1-2.

Superclass

Superclass

Partial
Specialization

Total
Specialization

Disjoint

Overlapping
Specialization

Specialization

r Subclass l \ Subclass ‘ ‘ Subclass ‘ \ Subclass

Figure 1-2. EER Diagram of the Specialization

Category

8 Chapter 1

A category is a subclass of the union of the superclasses with different
entity types. For example, entity type “Account” may be entity types
“Personal” or “Business”. Symbolically, a category E and the supclasses S,
S5, ..., Sy satisfy the relationship £ < §; v S, U ... U §,. The difference
between the category and the subclass with more than one superclass should
be noticed. Let E be a subclass and Sy, S5, ..., S, be its superclasses. One has
thenEcSinSHnM...nS,.

Figure 1-3 shows the category in the EER diagram.

S1 52 Sn

\>?/

E

Figure 1-3. EER Diagram of the Category

Aggregation

A number of entity types, say Si, 2, ..., Sn, are aggregated to form an
entity type, say E. In other words, E consists of S}, S5, ..., and §,. For
example, an entity type “Automobile” is aggregated from some entity types
such as “Engine”, “Gearbox”, and “Interior”, where “Interior” consists of
“Seat” and “Dashboard”. Here, S; (i=1, 2, ..., n) can be viewed as a kind of
composite attribute, but it is not a simple attribute, which is an entity type
consisting of simple attributes or other entity types. Therefore, the
aggregation abstract is proposed in object-oriented modeling as an abstract
means. Being not the same as specialization/generalization abstract,
aggregated entity and all component entities belong to different entity types.

Figure 1-4 shows the aggregation in the EER diagram.

1.2 UML Class Model

The Unified Modeling Language (UML) (Booch, Rumbaugh and
Jacobson, 1998; OMG, 2001) is a set of OO modeling notations that has
been standardized by the Object Management Group (OMG). The power of
the UML can be applied for many areas of software engineering and
knowledge engineering (Mili et al., 2001). The complete development of
relational and object relational databases from business requirements can be

1. Conceptual Data Modeling 9

described by the UML. The database itself traditionally has been described
by notations called entity relationship (ER) diagrams, using graphic
representation that is similar but not identical to that of the UML. Using the
UML for database design has many advantages over the traditional ER
notations (Naiburg, 2000). The UML is based largely upon the ER notations,
and includes the ability to capture all information that is captured in a
traditional data model. The additional compartment in the UML for methods
or operations allows you to capture items like triggers, indexes, and the
various types of constraints directly as part of the diagram. By modeling this,
rather than using tagged values to store the information, it is now visible on
the modeling surface, making it more easily communicated to everyone
involved. So more and more, the UML is being applied to data modeling
(Ambler, 2000a; Ambler, 2000b; Blaha and Premerlani, 1999; Naiburg,
2000). More recently, the UML has been used to model XML conceptually
(Conrad, Scheffiner and Freytag, 2000).

Rl

Figure 1-4. EER Diagram of the Aggregation

From the database modeling point of view, the most relevant model is the
class model. The building blocks in this class model are those of classes and
relationships. We briefly review these building blocks in the following.

1.2.1 Class

Being the descriptor for a set of objects with similar structure, behavior,
and relationships, a class represents a concept within the system being
modeled. Classes have data structure and behavior and relationships to other
elements.

10 Chapter 1

A class is drawn as a solid-outline rectangle with three compartments
separated by horizontal lines. The top name compartment holds the class
name and other general properties of the class (including stereotype); the
middle list compartment holds a list of attributes; the bottom list
compartment holds a list of operations. Either or both of the attribute and
operation compartments may be suppressed. A separator line is not drawn
for a missing compartment. If a compartment is suppressed, no inference can
be drawn about the presence or absence of elements in it. Figure 1-5 shows a
class.

Class name

Attributes

Operations

Figure 1-5. The Class Icon of the UML

1.2.2 Relationships

Another main structural component in the class diagram of the UML is
relationships for the representation of relationship between classes or class
instances. UML supports a variety of relationships.

(a) Aggregation and composition. An aggregation captures a whole-part
relationship between an aggregate, a class that represent the whole,
and a constituent part. An open diamond is used to denote an
aggregate relationship. Here the class touched with the white
diamond is the aggregate class, denoting the “whole”.

Figure 1-6 shows an aggregation relationship.

Car

Engine Interior Chassis

Figure 1-6. An Aggregation Relationship in the UML

Aggregation is a special case of composition where constituent parts
directly dependent on the whole part and they cannot exist
independently. Composition mainly applies to attribute composition.
A composition relationship is represented by a black diamond.

1. Conceptual Data Modeling 11

(b) Generalization. Generalization is used to define a relationship
between classes to build taxonomy of classes: one class is a more
general description of a set of other classes. The generalization
relationship is depicted by a triangular arrowhead. This arrowhead
points to the superclass. One or more lines proceed from the
superclass of the arrowhead connecting it to the subclasses.

Figure 1-7 shows a generalization relationship.

Vehicle

[]
Car Truck

Figure 1-7. A Generalization Relation in the UML

(c) Association. Associations are relationships that describe connections
among class instances. An association is a more general relationship
than aggregation or generalization. A role may be assigned to each
class taking part in an association, making the association a directed
link. An association relationship is expressed by a line with an
arrowhead drawn between the participating classes.

Figure 1-8 shows an association relationship.

installing

CD Player f————P» Car

Figure 1-8 An Association Relation in UML

(d) Dependency. A dependency indicates a semantic relationship
between two classes. It relates the classes themselves and does not
require a set of instances for its meaning. It indicates a situation in
which a change to the target class may require a change to the source
class in the dependency. A dependency is shown as a dashed arrow
between two classes. The class at the tail of the arrow depends on the
class at the arrowhead.

Figure 1-9 shows a dependency relationship.

Dependent f------------ p Employee

Figure 1-9. A Dependency Relationship in the UML

12 Chapter 1

1.3 XML

The eXtensible Markup Language (XML) (Bray, Paoli and Sperberg-
McQueen, 1998), a data formatting recommendation proposed by the W3C
as a simplified form of the Standard Generalized Markup Language
(SGML), is becoming the de facto standard for data description and
exchange between various systems and databases over the Internet. As a new
markup language, XML supports user-defined tags, encourages the
separation of document content from its presentation, and is able to automate
web information processing. This is creating a new set of data management
requirements involving XML, such as the need to store and query XML
documents.

1.3.1 XML Documents

An XML document has a logical and a physical structure (Bray, Paoli
and Sperberg-McQueen, 1998). The physical structure is consists of entities
that are ordered hierarchically. The logical structure is explicitly described
by markups that comprise declarations, elements, comments, character
references, and processing instructions.

XML documents that conform to the rules of XML mark-up are called
“well-formed”; for example, each document must have a single top-level
(root) element, and all tags must be correctly nested. A number of
additional instructions arc permitted, such as comments, processing
instructions, unparsed character data and entity references. Tags can also
contain attributes in the form of name and values pairs, with the values
enclosed in quotation marks. Figure 1-10 (Bourret, 2004) shows an example
XML document.

<SalesOrder SONumber="12345">
<Customer CustNumber="543">
<CustName>ABC Industries</CustName>
<Street>123 Main St.</Street>
<City>Chicago</City>
<State>IL</State>
<PostCode>60609</PostCode>
</Customer>
<QrderDate>981215</OrderDate>
<ltem ltemNumber="1">
<Part PartNumber="123">
<Description>
<p>Turkey wrench:

Stainless steel, one-piece construction, lifetime guarantee.</p>
</Description>
<Price>9.95</Price>
</Part>

1. Conceptual Data Modeling 13

<Quantity>10</Quantity>
</ltem>
<ltem ltemNumber="2">
<Part PartNumber="456">
<Description>
<p>Stuffing separator:

Aluminum, one-year guarantee.</p>
</Description>
<Price>13.27</Price>
</Part>
<Quantity>5</Quantity>
</ltem>
</SalesOrder>

Figure 1-10. Sales Order XML Document

Essentially, XML documents can be associated with and validated
against a schema specification in terms of a document type definition (DTD)
(Bray, Paoli and Sperberg-McQueen, 1998) or by using the more powerful
XML Schema language (Thompson et al., 2001; Biron and Malhotra, 2001).
In the following, we only focus on the DTD. Then XML document structure
consists of an optional document type declaration containing the DTD and a
document instance. The purpose of a DTD is to provide a grammar for a
class of documents. DTDs consist of markup declarations.

1.3.2 XML DTD Constructs

According to the XML specification, DTDs consist of markup
declarations namely element declarations, attribute-list declarations, entity
declarations, notation declarations, processing instructions, and comments
(Bray, Paoli and Sperberg-McQueen, 1998). As for these declarations, they
are the elementary building blocks on which a DTD can be designed.

Element Type and Attribute-list Declarations

Element type and attribute-list declarations make up the core of DTDs
and declare the valid structures of a document instance, namely, the nested
element tags with their additional attributes. An elements type declaration
associates the element content. XML provides a variety of facilities for the
construction of the element content, namely, sequence of elements, choice of
elements, cardinality constructors (?, *, +), the types of EMPTY, ANY,
#PCDATA, and mixed content. Sequence requires elements to have a fixed
order, whereas choice expresses element alternatives. An EMPTY element
has no content, whereas ANY indicates that the element can contain data of
type #PCDATA or any other element defined in the DTD. Mixed is useful

14 Chapter 1

when elements are supposed to obtain character data (#PCDATA),
optionally interspersed with child elements.

The name of attribute list must match the name of the corresponding
element. The list of attribute declaration consists of the attribute names, their
types and default declarations.

Entity Declarations

Entity declarations serve the reuse of DTD fragments and text as well as
the integration of unparsed data. An entity declaration binds an entity to an
identifier. Being external entities, unparsed entities always have notation
references.

Notation Declarations

Notation Declarations provide a name for the format of an unparsed
entity. They might be used as reference in entity declarations, and in
attribute-list declaration as well as in attribute specification.

Processing Instructions

Processing instructions play an important role while checking integrity
constraints of valid document instances. They have to be checked while
parsing a document instance. The XML parse validates the document
instance first and consumes the processing instructions known to XML.
Then an application can handle more specific processing instructions.

A simple DTD of the XML document in Figure 1-10 is given in Figure 1-
11 as follows.

<IELEMENT SaleOrder (Customer*, OrderDate, Iltem*)>
<IATTLIST SaleOrder SONumber IDREF #REQUIRED>
<!ELEMENT Customer (CustName?, Street?, City?, State?, PostCode?)>
<IATTLIST Customer CustNumber IDREF #REQUIRED>
<IELEMENT CustName #PCDATA)>
<IELEMENT Street (#PCDATA)>
<IELEMENT City (#PCDATA)>
<IELEMENT State (#PCDATA)>
<|ELEMENT PostCode #PCDATA)>
<lELEMENT OrderDate (#PCDATA)>
<IELEMENT ltem (Part*, Quantity)>
<IATTLIST Item IltemNumber IDREF #REQUIRED>
<!ELEMENT Part (Description?, Price?)>
<IATTLIST Part PartNumber IDREF #REQUIRED>
<IELEMENT Description (#PCDATA)>
<!ELEMENT Price (#PCDATA)>
<IELEMENT Quantity (#PCDATA)>

Figure 1-11. The DTD of the XML Document in Figure 1-10

1. Conceptual Data Modeling 15

It should be noticed that, however, XML lacks sufficient power in
modeling real-world data and their complex inter-relationships in semantics.
Hence, it is necessary to use other methods to describe data paradigms and
develop a true conceptual data model, and then transform this model into an
XML encoded format, which can be treated as a logical model. Figure 1-12
depicts such a procedure to integrate conceptual data models and XML,
making it easier to create, manage and retrieve XML documents.

Conceptual mapping > XML
Data Models DTD

Figure [-12. Transformation from Conceptual Data Models to XML DTD

Conceptual data modeling of XML schema (here XML schema refers to
XML DTD or XML Schema, while XML Schema refers to the XML schema
language proposed by W3C (Thompson et al., 2001; Biron and Malhotra,
2001)) has been studied in the recent past. In (Conrad, Scheffiner and
Freytag, 2000), UML was used for designing XML DTD. The idea is to use
essential parts of static UML to model XML DTD. The mapping between
the static part of UML (i.e., class diagrams) and XML DTDs was developed.
To take advantage of all facets that DTD concepts offer, the authors further
extended the UML language in an UML-compliant way. Focusing on
conceptual modeling at XML Schema level instead of XML DTD level,
Xiao et al. (2001) introduced a solution for modeling XML and the
transformation from object-oriented (OO) conceptual models to XML
Schema, where the OO features are more general and are not limited to
UML. Also in (Mani, Lee and Muntz, 2001), a set of features found in
various XML schema languages (e.g., XML DTD and XML Schema) was
formalized into XGrammar and the conversion between an XGrammar and
EER model was presented. The EER was also used in (Elmasri ef al., 2002)
to generate customized hierarchical views and then further create XML
schemas from the hierarchical views. In (Psaila, 2000), the ER model was
extended to ERX so that one can represent a style sheet and a collection of
documents conforming to one DTD in ERX model. But order was
represented in ERX model by an additional order attribute.

XML DTDs can also be converted to conceptual models. In (dos Santos
Mello and Heuser, 2001), a semi-automatic process for converting an XML
DTD to a schema in a canonical conceptual model based on ORM/NIAM
and extended ER models was described. A set of conversion rules, which
was the core of this process, was hereby developed.

16 Chapter 1

1.3.3 XML Databases

It is crucial for Web-based applications to model, storage, manipulate,
and manage XML data documents. XML documents can be classified into
data-centric documents and document-centric documents (Bourret, 2004).

Data-Centric Documents

Data-centric documents are characterized by fairly regular structure, fine-
grained data (i.e., the smallest independent unit of data is at the level of a
PCDATA-only element or an attribute), and little or no mixed content. The
order in which sibling elements and PCDATA occurs is generally not
significant, except when validating the document. Data-centric documents
are documents that use XML as a data transport. They are designed for
machine consumption and the fact that XML is used at all is usually
superfluous. That is, it is not important to the application or the database that
the data is, for some length of time, stored in an XML document.

As a general rule, the data in data-centric documents is stored in a
traditional database, such as a relational (Kappel et al., 2000; Lee and Chu,
2000), object-oriented (Chung et al., 2001), object-relational (Surjanto,
Ritter and Loeser, 2000), or hierarchical database. The data can also be
transferred from a database to a XML document (Vittori, Dorneles and
Heuser, 2001; Shanmugasundaram et a/., 2001; Carey ef al., 2000).

For the transfers between XML documents and databases, the mapping
relationships between their architectures as well as their data should be
created (Lee and Chu, 2000; Surjanto, Ritter and Loeser, 2000). Note that it
is possible to discard some information such as the document and its
physical structure when transferring data between them. It must be pointed
out, however, that the data in data-centric documents such as semistructured
data can also be stored in a native XML database, in which a document-
centric document is usually stored.

The sales order XML document shown in Figure 1-10 is data-centric.

Document-Centric Documents

Document-centric documents are characterized by less regular or
irregular structure, larger grained data (that is, the smallest independent unit
of data might be at the level of an element with mixed content or the entire
document itself), and lots of mixed content. The order in which sibling
elements and PCDATA occurs is almost always significant. Document-
centric documents are usually documents that are designed for human
consumption. As a general rule, the documents in document-centric
documents are stored in a native XML database or a content management
system (an application designed to manage documents and built on top of a

1. Conceptual Data Modeling 17

native XML database). Native XML databases are databases designed
especially for storing XML documents. The only difference of native XML
databases from other databases is that their internal model is based on XML
and not something else, such as the relational model.

In practice, however, the distinction between data-centric and document-
centric documents is not always clear. So the above-mentioned rules are not
of a certainty. Data, especially semistructured data, can be stored in native
XML databases and documents can be stored in traditional databases when
few XML-specific features are needed. Furthermore, the boundaries between
traditional databases and native XML databases are beginning to blur, as
traditional databases add native XML capabilities and native XML databases
support the storage of document fragments in external databases.

The following product description given in Figure 1-13 is document-
centric (Bourret, 2004).

<Product>

<Intro>

The <ProductName>Turkey Wrench</ProductName> from <Developer>Full
Fabrication Labs, Inc.</Developer> is <Summary>like a monkey wrench,
but not as big.</Summary>

</Intro>

<Description>

<Para>The turkey wrench, which comes in <i>both right- and left-
handed versions (skyhook optional)</i>, is made of the finest
stainless steel. The Readi-grip rubberized handle quickly adapts
to your hands, even in the greasiest situations. Adjustment is
possible through a variety of custom dials.</Para>

<Para>You can:</Para>

<List>

<tem><Link URL="Order.html">Order your own turkey wrench</Link></ltem>
<ltem><Link URL="Wrenches.htm">Read more about wrenches</Link></Item>
<ltem><Link URL="Catalog.zip">Downioad the catalog</Link></Item>

</List>

<Para>The turkey wrench costs just $19.99 and, if you

order now, comes with a hand-crafted shrimp hammer as a

bonus gift.</Para>

</Description>

</Product>

Figure 1-13. The Document-Centric XML Document of Product Description

18 Chapter 1

References

Ambler, S. W., 2000a, The design of a robust persistence layer for relational databases,
http://www.ambysoft.com/persistencel.ayer.pdf.

Ambler, S. W, 2000b, Mapping objects to relational databases,
http://www.AmbySoft.com/mappingObjects.pdf.

Biron, P. V. and Malhotra, A. (Eds), 2001, XML Schema Part 2: Datatypes, W3C
Recommendation, http://www.w3.org/TR/xmlschema-2/.

Blaha, M. and Premerlani, W., 1999, Using UML to design database applications,
http://www therationaledge.com/rosearchitect/mag/archives/9904/£8 . html.

Booch, G., Rumbaugh, J. and Jacobson, L, 1998, The Unified Modeling Language User
Guide, Addison-Welsley Longman, Inc.

Bourret, R., 2004, XML and databases,
http://www rpbourret.com/xmlI/ XML AndDatabases.htm.

Bray, T., Paoli, J. and Sperberg-McQueen, C. M. (Eds), 1998, Extensible Markup Language
(XML) 1.0, W3C Recommendation, hitp://www.w3.0rg/TR/1998/REC-xm]-19980210.
Carey, M. J., Kiernan, J., Shanmugasundaram, J., Shekita, E. J. and Subramanian, S. N., 2000,
XPERANTO: Middleware for publishing object-relational data as XML documents,

Proceedings of 26th International Conference on Very Large Data Bases, 646-648.

Chen, P. P., 1976, The entity-relationship model: Toward a unified view of data, ACM
Transactions on Database Systems, 1 (1): 9-36.

Chung, T. S., Park, S., Han, S. Y. and Kim, H. J., 2001, Extracting object-oriented database
schemas from XML DTDs using inheritance, Lecture Notes in Computer Science 2115,
49-59.

Conrad, R., Scheffiner, D. and Freytag, J. C., 2000, XML conceptual modeling using UML,
Lecture Notes in Computer Science 1920, 558-571.

dos Santos Mello, R. and Heuser, C. A., 2001, A rule-based conversion of a DTD to a
conceptual schema, Lecture Notes in Computer Science 2224, 133-148.

dos Santos, C., Neuhold, E. and Furtado, A., 1979, A data type approach to the entity-
relationship model, Proceedings of the Ilst International Conference on the Entity-
Relationship Approach to Systems Analysis and Design, 103-119.

Elmasri, R., Weeldreyer, J. and Hevner, A., 1985, The category concept: an extension to the
entity-relationship model, /nternational Journal on Data and Knowledge Engineering, 1
(1): 75-116.

Elmasri, R., Wu, Y. C., Hojabri, B, Li, C. and Fu, J., 2002, Conceptual modeling for
customized XML schemas, Lecture Notes in Computer Science 2503, 429-443.

Gegolla, M. and Hohenstein, U., 1991, Towards a semantic view of an extended entity-
relationship model, ACM Transactions on Database Systems, 16 (3): 369-416.

Kappel, G., Kapsammer, E., Rausch-Schott, S. and Retschitzegger, W., 2000, X-Ray:
Towards integrating XML and relational database systems, Lecture Notes in Computer
Science 1920, 339-353.

Lee, D. W. and Chu, W. W, 2000, Constraints-preserving transformation from XML
document type definition to relational schema, Lecture Notes in Computer Science 1920,
323-338.

Lee, M. L., Lee, S. Y., Ling, T. W., Dobbie, G. and Kalinichenko, L. A., 2001, Designing
semistructured databases: a conceptual approach, Lecture Notes in Computer Science
2113, 12-21.

Mani, M., Lee, D. W. and Muntz, R. R., 2001, Semantic data modeling using XML schemas,
Lecture Notes in Computer Science 2224, 149-163.

1. Conceptual Data Modeling 19

Mili, F., Shen, W., Martinez, 1., Noel, Ph., Ram, M. and Zouras, E., 2001, Knowledge
modeling for design decisions, Artificial Intelligence in Engineering, 15: 153-164.

Naiburg, E., 2000, Database modeling and design wusing rational rose 2000,
http://www.therationaledge.com/rosearchitect/mag/current/spring00/£5. html.

OMG, 2001, Unified Modeling Language (UML), version 1.4,
http://www.omg.org/technology/documents/formal/uml.htm.

Psaila, G., 2000, ERX: A data model for collections of XML Documents, Proceedings of the
2000 ACM Symposium on Applied Computing, 2: 898-903.

Scheuermann, P., Schiffner, G. and Weber, H., 1979, Abstraction capabilities and invariant
properties modeling within to the entity-relationship approach, Proceedings of the st
International Conference on the Entity-Relationship Approach to Systems Analysis and
Design, 121-140.

Seligman, L. and Rosenthal, A., 2001, XML’s impact on databases and data sharing, /EEE
Computer, June, 59-67. ‘

Shanmugasundaram, J., Shekita, E. J., Barr, R., Carey, M.], Lindsay, B. G., Pirahesh, H. and
Reinwald, B., 2001, Efficiently publishing relational data as XML Documents, VLDB
Journal, 10 (2-3): 133-154.

Surjanto, B., Ritter, N. and Loeser, H., 2000, XML content management based on object-
relational database technology, Proceedings of the First International Conference on Web
Information Systems Engineering, 1, 70-79.

Thompson, H. S., Beech, D., Maloney, M. and Mendelsohn, N. (Eds), 2001, XML Schema
Part 1: Structures, W3C Recommendation, http://www.w3.org/TR/xmlschema-1/.

Vittori, C. M., Dorneles, C. F. and Heuser, C. A., 2001, Creating XML documents from
relational data sources, Lecture Notes in Computer Science 2115, 60-70.

Xiao, R. G., Dillon, T. S., Chang, E. and Feng, L., 2001, Modeling and transformation of
object-oriented conceptual models into XML schema, Lecture Notes in Computer Science
2113, 795-804.

Chapter 2
LOGICAL DATABASE MODELS

The evolution of database systems was initially driven by the
requirements of traditional data processing. Hierarchical and network data
models were adopted by database management systems (DBMS) as database
models in the 1960s and 1970s. The hierarchical and network data models
have the drawbacks that the data models couple with the need for a formally
based database model, which clearly separate the physical and logical model.
Relational database model, put forward by E. F. Codd in 1970s (Codd,
1970), has a simple structure and a solid mathematical foundation. It rapidly
replaced the hierarchical and network database models and became the
dominant database model for commercial database systems.

With the breadth and depth of database uses in many emerging areas as
diverse as biology and genetics, artificial intelligence, computer aided
design, and geographical information systems, it was realized that the
relational database model as defined by Codd, had semantic and structured
drawbacks when it came to modeling of such specialized applications. The
next evolution of database models took the form of rich data models such as
the object-oriented data model (Abiteboul, Hull and Vianu, 1995; Elmasri
and Navathe, 1994; Kim and Lochovsky, 1989) and the semantic data
models (Abiteboul and Hull, 1987; Elmasri and Navathe, 1994; Hammer and
McLeod, 1981).

Relational database model and object-oriented database model are typical
the representatives of the logical database models. Based on these two basic
database models, there exists a kind of hybrid database model called object-
relational database model. In addition, new developments in artificial
intelligence and procedure control have resulted in the appearances of
deductive databases, active databases, temporal databases, and spatial

22 Chapter 2

databases. These databases generally adopt either one of the above-
mentioned two basic database models or a hybrid database model.

2.1 The Relational Database Model

Relational database model introduced first by Codd (1970) is the most
successful one and relational databases have been extensively applied in
most information systems in spite of the increasing populations of object-
oriented databases. A relational database is a collection of relations.

2.1.1 Attributes and Domains

The representations for some features are usually extracted from real-
world things. The features of a thing are called attributes. For each attribute,
there exists a range that the attribute takes values, called domain of the
attribute. A domain is a finite set of values and every value is an atomic data,
the minimum data unit with meanings.

2.1.2 Relations and Tuples

Let A, A, ..., A, be attribute names and the corresponding attribute
domains be Dy, D, ..., D, (or Dom (A;j), 1 < i < n), respectively. Then
relational schema R is represented as

R= (D]/A], DQ/AQ, cery Dn/An)
or
R= (Al, Az, teey An),

where n is the number of attributes and is called the degree of relation.

The instances of R, expressed as » or 7 (R), are a set of n-tuples and can
be represented as ¥ = {¢, f, ..., tn}. A tuple ¢ can be expressed as ¢ = <vj, v,
.y Vo>, Where vie Di (1 <i<n),ie., te Dy xD; x ... x D,. The quantity » is
therefore a subset of Cartesian product of attribute domains, i.e., 7 = D; x D,
x ... x D,. Viewed from the content of a relation, a relation is a simple table,
where tuples are its rows and attributes are its columns. Note that there is no
complex data in relational table. The value of a tuple ¢ on attribute set S is
generally written ¢ [S], where S R.

2. Logical Databases Models 23
2.1.3 Keys

If an attribute value or the values of an attribute group in a relation can
solely identify a tuple from other tuples, the attribute or attribute group is
called a super key of the relation. If any proper subsets of a super key are not
a super key, such super key is called a candidate key or shortly key.

For a relation, there may be several candidate keys. One chooses one
candidate as the primary key, and other candidates are called alternate key. It
is clear that the values of primary key of all tuples in a relation are different
and are not null. The attributes included in a candidate key are called prime
attributes and not included in any candidate key called non-prime attributes.
If an attribute or an attribute group is not a key of relation » but it is a key of
relation s, such attribute (group) is called foreign key of relation r.

2.14 Constraints

There are various constraints in the relational databases. We identify

these constraints as follows.

(a) Domain integrity constraints. The basic contents of domain integrity
constraints are that attribute values should be the values in the
domains. In addition, domain integrity constraints are also prescribed
if an attribute value could be null.

(b) Entity integrity constraints. Every relation should have a primary key
and the value of the primary key in each tuple should be sole and
cannot be null.

(c) Referential integrity constraints. Let a relation » have a foreign key
FK and the foreign key value of a tuple ¢ in » be ¢ [FK]. Let FK quote
the primary key PK of relation ’ and ¢ be a tuple in »’. Referential
integrity constraint demands that ¢ [FK] comply with the following
constraint: ¢ [FK]=¢ [PK]/null.

(d) General integrity constraints. In addition to the above-mentioned
three kinds of integrity constraints that are most fundamental in
relational database model, there are other integrity constraints related
to data contents directly, called general integrity constraints.
Because numbers of them are very large, only a few of them are
considered in current relational DBMSs. Among these constraints,
Junctional dependencies (FD) and multivalued dependencies (MVD)
are more important in relational database design theory and widely
investigated.

The functional dependencies (FD) in relational databases represent the

dependency relationships among attribute values in relation. In the relational
databases, functional dependencies can be defined as follows.

24 Chapter 2

Definition: For a relation » (R), in which R denotes the schema, its
attribute set is denoted by U, and X, ¥ < U, we say r satisfies the functional
dependency FD: X — Y, if

VMterny(Vser)([X]=s[X]=>[Y]=s[T]).

Based on the concept of functional dependency, the partial/full functional
dependencies and the transitive functional dependency can be defined as
follows.

Definition: For a relation » (R), in which R denotes the schema, its
attribute set is denoted by U, and X, ¥ < U, we say Y is fully functionally
dependent on X, denoted by X —/ Y, if and only if X — Y and there does not
exit X’ < X (X’ # @) such that X’ — Y. If such X exits, then Y is partially
functionally dependent on X, denoted by X —, Y.

The notion of keys can consequently be defined in terms of FDs.

Definition: For a relation » (R), in which R denotes the schema, its
attribute set is denoted by U, and K < U, we say K is a candidate key of R if
and only if K —, U.

Multivalued dependencies (MVD) originated by Fagin (1977) are another
important data dependencies that are imposed on the tuples of relational
databases, relating an attribute value or a set of attribute values to a set of
attribute values, independent of the other attributes in the relation. In
classical relational databases, multivalued dependencies can be defined as
follows.

Definition: For a relation » (R), in which R denotes the schema, its
attribute set is denoted by U, X, Y < U, and Z = U — XY, we say r satisfies
the multivalued dependency MVD: X »>— ¥, if

(Vien(VsenXl=sX]=>Q@uer @X]=t[X]ru[Y]=t[Y]
AulZ]=s[Z])).

In the relational databases, the functional and multivalued dependencies
satisfy the inference rules, namely, the axiom systems (Armstrong, 1974,
Beeri, Fagin and Howard, 1977). For the functional dependency, for
example, the Armstrong axioms (1974) can be used to derive all possible
FDs implied by a given set of dependencies. Let » (R) be a relation on
schema R, its attribute set be denoted by U, and X, ¥, Z < U. Then the
following is a set of Armstrong axioms.

() Inclusion rule: if X2 Y, then X — Y.

(b) Transitivity rule: if X — Yand Y — Z, then X — Z.

(c) Augmentation rule: If X —» Y, then X W Z > YU Z

2. Logical Databases Models 25
2.15 The Relational Algebra

Relational database model provides some operations, called the
relational algebra operations. These operations can be subdivided into two
classes:

(a) the operations for relations only (select, project, join, and division)

and

(b) the set operations (union, difference, intersection, and Cartesian

product).
In addition, some new operations such as outerjoin, outerunion and
aggregate operations are developed for database integration or statistics and
decision support. By using these operations, one can query or update
relations.

Union (L)

Union is a binary set operation on two relations that are union-
compatible. That means they have the same number of attributes with the
same domains pairwisely. Formally let » and s be two union-compatible
relations on the scheme R (A1, A2, ..., An). Then

rus={t|tervtes}

It is clear that the result of » U s is a relation on the schema R that
includes all tuples which are either in 7 or in s or in both » and s. Of course,
duplicate tuples, if any, must be eliminated.

Difference (-)

Difference is a binary set operation on two relations that are union-
compatible. Formally let » and s be two union-compatible relations on the
scheme R (Al, A2, ..., An). Then

r—s={t|terntes}

It can be seen that the result of » — s is a relation on the schema R that
includes the tuples which are only in » but not in s.

Cartesian product (x)

Cartesian product is a binary set operation on two relations. Formally let
7 and s be two fuzzy relations on schema R and S, respectively. Then

rxs={t(RUS)|t[Rlernt[S]es}

That is, the result of » x s is a relation on the schema R U S, in which a
tuple is a combination of a tuple from » and a tuple from s. So |r x 5| = |r|
x |s]. Here |#| denotes the number of tuples in 7.

26 Chapter 2

Projection (IT)

Projection is a unary operation on a relation. Formally let » be relation on
the scheme R (A1, A2, ..., An). Then the projection of » over attribute subset
S (S < R) is defined as follows.

s () ={ @OV (xer@Ar=x[S)}

In other words, the result of Ilg () is a relation on the schema S that only
includes the columns of relational table » which are given in S. It should
noticed that, if the attributes in S are all non-key attributes of » (R), duplicate
tuples may appear in [1g (#) and must be eliminated.

Selection (o)

Selection is a unary operation on a relation. Formally let 7 be relation on
the scheme R (A1, A2, ..., An). Then the selection of » based on a selection
condition P specified by a Boolean expression in forms of a single or
composite predicate is defined as follows.

op(r)={t|ternP ()}

Clearly, the result of op (#) is a relation on the schema R that only
includes the tuples in » which satisfy the given selection condition P.

The five relational operations given above are called the primitive
operations in the relational databases. In addition, there are three additional
relational operations, namely, intersection, join (and natural join), and
division. But the three operations can be defined by the primitive operations.

Intersection (M)

Intersection is a binary set operation on two relations that are union-
compatible. Formally let » and s be two union-compatible relations on the
scheme R (A1, A2, ..., An). Then

ros={t|terntestorrns=r—(r—s)

The result of ¥ M s is a relation on the schema R that includes the tuples
which are both in » and in s.

Join (1<)

Join is a binary set operation on two relations. Formally let # (R) and s (.S)
be any two relations. Let P be a conditional predicate in the form of 4 6 B,
where 0 € {>, <, 2, <, = #}, where 4 € R, and B € S. Then

rxps={t(RUS)|t[R]errt[S]esAP({[R], t[S]D} or

2. Logical Databases Models 27

Fidps=cp(rxs)

The result of » >< s is a relation on the schema R U §, in which a tuple is
a combination of a related tuple from » and a related tuple from s. Not being
the same as the Cartesian product operation, the two combined tuples
respectively from » and s must satisfy the given condition.

When attributes 4 and B are identical and “0” takes =, the join operation
becomes the natural join operation, denoted » 1< 5. Let 0 = R n S. Then

rxs={RUE-MNIEANENExer®ryes@)Arx[Q]=y
[OVAt[R]=x [RIAt[S-Q]=y[S-0]}

Division (+)

Division, referred to quotient operation sometimes, is used to find out the
sub-relation » + s of a relation 7, containing sub-tuples of » which have for
complements in r all the tuples of a relation s. Then the division operation is

defined by
r+s={t|(Vuwy(uesn(t,u) er),

where u is a tuple of s and ¢ is a sub-tuple of » such that (¢, %) is a tuple of .
Alternatively, let » (R) and s (S) be two relations, where SC R. Let =R
— §. Then the division of » and s can be defined as follows.

r+s=To ()~ Mo (r(Q) x s ~7)

2.1.6 Relational Database Design

Overall Design of Databases

The objective of database design is to capture the essential aspects of
some real-world enterprise for which one wishes to construct a database
(Petry, 1996). Figure 2-1 shows a simplified description of the database
design process (Elmasri and Navathe, 1994). Then four major steps are
applied for the database design process, which are the requirements
collection & analysis, conceptual data modeling, logical database model,
and physical database model, respectively.

In the first step, the database designers collect and analyze the data
requirements from prospective database users. As a result of this step, a
concisely written set of users’ requirements is formed.

In the second step, the conceptual data models (e.g., ER/EER and UML)
are used to create a conceptual schema for the database. Here, the conceptual

28 Chapter 2

schema is a concise descriptions of the data requirements of the users and
includes detailed descriptions of the data types, relationships, constraints,
and etc. But there are no any implementation details in the conceptual
schema. So it should be easy to share the conceptual schema with non-
technical users. It is worth mentioning that a complex database is generally
designed cooperatively by a design group and each member of the group
may have different background. So using multiple conceptual data models to
create the conceptual schema can facilitate the database designers with
different background to design their conceptual data schemas easily by using
one of the conceptual data models they are familiar with. But finally all these
conceptual schemas designed by different members should be converted into
a union conceptual schema. There are already some efforts for converting
different conceptual schemas (Cherfi, Akoka and Comyn-Wattiau, 2002).

v

Requirements
Collection & Analysis

v

Conceptual Data
Modeling

v

Logical Database
Model

v

Physical Database
Model

Figure 2-1. Database Design Process

In the third step, the logical database model is designed through mapping
the conceptual schema represented by the conceptual data model. The result
of this step is perhaps a relational or object-oriented database model. In
(Teorey, Yang and Fry, 1986), for example, relational databases were
logically designed using the ER model.

Finally, in the fourth step, the physical database model is design. Of
course, this step is mostly already formulated with a commercial DBMS.

Relational Database Design Theory
In the context of relational databases, the relational database model
should be designed in terms of a set of good schemas such that update

2. Logical Databases Models 29

anomalies and data redundancy are minimized. Here update anomalies mean
that the undesired consequences occur when updating the data in the
relational databases (e.g., inserting, deleting or modifying the tuples). The
reason is that there exist certain undesired dependency relationships between
the attributes of a relation.

The relational database design theory has been developed for minimizing
update anomalies and data redundancy, which core is the normalization
theory. The process of normalization is the process of relation schema
decomposition so that certain undesired dependency relationships are
removed to lead to certain normal forms (NFs).

Let r (R) be a relation on schema R, U be the attribute set of R, and X, K,
A c U. Here K is the candidate key of R. Then we have the following major
NFs in the relational databases.

(a) The first normal form (INF): R is in INF, denoted by R € INF, if and

only if every attribute value in » (R) is atomic.

(b) The second normal form (2NF): R is in 2NF, denoted by R € 2NF, if
and only if R € INF and for any non-prime attribute 4, K —, A4.

(¢) The third normal form (3NF): R is in 3NF, denoted by R € 3NF, if
and only if R € INF and for any X > 4 (4 £X), either X is a
superkey of R or 4 is a set of prime attributes.

(d) The Boyce-Codd normal form (BCNF): R is in BCNF, denoted by R
€ BCNEF, if and only if R € INF and for any X — 4 (4 &£X), either X
is a superkey of R.

A lower NF can be normalized into a higher NF through relation schema

decomposition (via projection). Figure 2-2 shows the details (Chen 1999).

INF

removing partial FDs of non-prime attributes on keys

\4
2NF

removing transitive FDs of non-prime attributes on keys

3NF

removing partial and transitive FDs of prime attributes on (other) keys

v
BCNF

Figure 2-2. Normal Forms Based on Functional Dependencies

30 Chapter 2

It should be noticed that the schema decomposition should satisfy the
following properties:

(a) lossless-join. It means that the relation reconstructed from the
resultant relations of the decomposition will be the same as the
original relation with respect to information contents.

(b) dependency-preservation. It means that the functional dependencies
in the original relation are preserved by the resultant relations of the
decomposition.

The four NFs discussed above are based on the functional dependency. In
addition, there are other kinds of normal forms such as the fourth normal
form (4NF) and the fifth normal form (5NF), which are related with
multivalued dependency and join dependency, respectively.

2.2 The Nested Relational Database Model

The normalization, being one kind of constraints, is proposed in
traditional relational databases. Among various normalized forms, first
normal form (INF) is the most fundamental one, which assumes that each
attribute value in a relational instance must be atomic. As we know, the real-
world applications are complex, and data types and their relationships are
rich as well as complicated. The INF assumption limits the expressive
power of traditional relational database model. Therefore, some attempts to
relax INF limitation are made and one kind of data model, called non-first
normal (or nested) relational database model have been introduced,

The first attempt to relax first-normal formal limitation is made by
Makinouchi (1977), where, attribute values in the relation may be atomic or
set-valued. Such relation is thereby called non-first normal form (NE?) one.
After Makinouchi’s proposal, NF? database model is further extended
(Ozsoyoglu, Ozsoyoglu and Matos, 1987; Schek and Scholl, 1986). The NF?
database model in common sense now means that attribute values in the
relational instances are either atomic or set-valued and even relations
themselves. So NF? databases are called nested relational databases also. In
this paper, we do not differentiate these two notions. A formal definition of
NF” relational schema is given as follows.

Definition. An attribute Aj is a structured attribute if its schema appears
on the left-hand side of a rule; otherwise it is simple.

Definition. An NF” relational schema may contain any combination of
simple or structured attributes on the right-hand side of the rules. Formally,

Schema:: Simple_attribute | Simple_attribute, Structured attributes

2. Logical Databases Models 31

Structured_attributes:: Simple_attribute | Simple_attribute,
Structured_attributes

A schema is called flat if and only if all of its attributes are simple. It is
clear that a classical schema, namely, a flat relational schema, is a special
case of a nested relational schema. Two nested schemas are called union-
compatible, meaning the ordered attributes have the same nesting structure,
if and only if the corresponding simple attributes and structured attributes are
union-compatible.

Let a relation » have schema R = (A1, A2, ..., An) and let D1, D2, ..., Dn
be corresponding domains from which values for attributes (A1, A2, ..., An)
are selected. A tuple of an NF” relation is an element in » and denoted as
<al, a2, ..., an> consisting of » components. Each component a; (1 <j < n)
may be an atomic or null value or another tuple. If Aj is a structureed
attribute, then the value aj need not be a single value, but an element of the
subset of the Cartesian product of associated domains Dj1, Dj2, ..., Djm.

Based on the NF” database model, the ordinary relational algebra has
been extended. In addition, two new restructuring operators, called the Nest
and Unnest (Ozsoyoglu, Ozsoyoglu and Matos, 1987; Roth, Korth and
Batory, 1987) (as well as Pack and Unpack (Ozsoyoglu, Ozsoyoglu and
Matos, 1987)), have been introduced. The Nest operator can gain the nested
relation including complex-valued attributes. The Unnest operator is used to
flatten the nested relation. That is, it takes a relation nested on a set of
attributes and desegregates it, creating a “flatter" structure. The formal
definitions and the properties of these operators as well as the ordinary
relational algebra for the NF? data model have been given (Colby, 1990;
Venkatramen and Sen, 1993).

2.3 The Object-Oriented Database Model

Although there has been great success in using the relational databases
for transaction processing, the relational databases have some limitations in
some non-transaction applications such as computer-aided design and
manufacturing (CAD/CAM), knowledge-based systems, multimedia, and
GIS. Such limitations include the following.

(a) The data type is very restricted.

(b) The data structure based on the record notion may not match the real-

world entity.

(c) Data semantics is not rich, and the relationships between two entities

cannot be represented in a natural way.
Therefore, some non-traditional data models were developed in succession
to enlarge the application area of databases since the end of the 1970s. Since

32 Chapter 2

these non-traditional data models appeared after the relational data model,
they are called post-relational database models. Object-oriented database
model is one of the post-relational database models.

Object-oriented (OO) data model is developed by adopting some
concepts of semantic data models and knowledge expressing models, some
ideas of object-oriented program language and abstract data type in data
structure/programming.

2.3.1 Objects and Identifiers

All real-world entities can be simulated as objects, which have no unified
and standard definition. Viewing from the structure, an object consists of
attributes, methods and constraints. The attributes of an object can be simple
data and other objects. The procedure that some objects constitute a new
object is called aggregation. A method in an object contains two parts:
signature of the method that illustrates the name of the method, parameter
type, and result type; implementation of the method.

In general, attributes, methods and constraints in an object are
encapsulated as one unit. The state of an object is changed only by passing
message between objects. Encapsulation is one of the major features in OO
data models.

In OO data models, each object has a sole and constant identifier, which
is called object identifier (OID). For two objects with same attributes,
methods and constraints, they are different objects if they have a different
OID. The OID of an object is generated by system and cannot be changed by
the user.

The OID generated by system can be divided into two kinds, i.e., logical
object identifier and physical object identifier. Logical object identifier is
mapped into physical one when an object is used because only physical
object identifier concerns the storage address of the object.

2.3.2 Classes and Instances

In OO data models, objects with the same attributes, methods and
constraints can be incorporated into a class, where objects are called
instances. In a class, attributes, methods and constraints should be declared.
Note that the attributes in a class can be classified into two kinds: instance
variables and class variables. Instance variables are the attributes for which
values are different in different objects of the class, while class variables are
the attributes for which values are the same in different objects of the class.

In fact, classes can also be regarded as objects. Then, classes can be
incorporated into another new class, called meta class. The instances of a

2. Logical Databases Models 33

meta class are classes. Therefore, objects are distinguished into instance
objects and class objects.

2.3.3 Class Hierarchical Structure and Inheritance

A subset of a class, say A, can be defined as a class, say B. Class B is
called a subclass and class A is called superclass. A subclass can further be
divided into new subclasses. A class hierarchical structure is hereby
formed, where it is permitted that a subclass has several direct or indirect
superclasses. The relationship between superclass and subclass is called 15-4
relationship, which represents a specialization from top to bottom and a
generalization from bottom to top. Because one subclass can have several
direct superclasses, a class hierarchical structure is not a tree but a class
lattice.

Because a subclass is a subset of its superclass, the subclass inherits the
attributes and methods in its all superclasses. Besides inheritance, a subclass
can define new attributes and methods or can modify the attributes and
methods in the superclasses. If a subclass has several direct superclasses, the
subclass inherits the attributes and methods from these direct superclasses.
This is called multiple inheritance.

When inheriting, the naming conflict may occur, which should be
resolved.

(a) Conflict among superclasses. If several direct superclasses of a
subclass have the same name of attributes or methods, the conflict
among superclasses appear. The solution is to declare the superclass
order inherited, or to be illustrated by user.

(b) Conflict between a superclass and a subclass. When there are
conflicts between a subclass and a superclass, the definition of
attributes and methods in subclass would override the same definition
in the superclass.

Note that a naming method may have a different meaning in different
classes. The feature that a name has a multiple meaning is called
polymorphism. The method with polymorphism is called overloading.
Because the method in an object is polymorphism, the procedure
corresponding to the method name cannot be determined while compiling
program and do while running program. The later combination of the
method name and implementing procedure of a method is called /late
binding.

References

Abiteboul, S. and Hull, R., 1987, IFO: A formal semantic database model, ACM Transactions
on Database Systems, 12 (4): 525-565.

34 Chapter 2

Abiteboul, S., Hull, R. and Vianu, V., 1995, Foundations of Databases, Addison Wesley.

Armstrong, W. W., 1974, Dependency structures of data base relationships, Proceedings of
the IFIP Congress, 580- 583.

Beeri, C., Fagin, R. and Howard, J. H., 1977, A complete axiomatization for functional and
multivalued dependencies in database relations, ACM SIGMOD Conference, 47-61.

Chen, G. Q., 1999, Fuzzy Logic in Data Modeling; Semantics, Constraints, and Database
Design, Kluwer Academic Publisher.

Cherfi, S. S., Akoka, J. and Comyn-Wattiau, 1., 2002, Conceptual modeling quality: from
EER to UML schemas evaluation, Lecture Notes in Computer Science, 2503: 414-428,

Codd, E.F., 1970, A relational model of data for large shared data banks, Communications of
the ACM, 13 (6): 377-387.

Colby, L. S., 1990, A recursive algebra for nested relations, Information Systems, 15 (5). 567—
662.

Elmasri, R. and Navathe, S. B., 1994, Fundamentals of Database Systems, Second Edition,
Benjamin/Cummings.

Fagin, R., 1977, Multivalued dependencies and a new normal form for relational databases,
ACM Transactions on Database Systems, 2 (3): 262-278.

Hammer, M. and McLeod, D., 1981, Database description with SDM: a semantic database
model, ACM Transactions on Database Systems, 6 (3): 351-386.

Kim, W. and Lochovsky, F. H., 1989, Object-Oriented Concepts, Databases and
Applications, Addison Wesley.

Makinouchi, A., 1977, A consideration on normal form of not-necessarily normalized
relations in the relational data model, Proceedings of Third International Conference on
Very Large Databases, Tokyo, Japan, October, 447453,

Ozsoyoglu, G., Ozsoyoglu, Z. M. and Matos, V., 1987, Extending relational algebra and
relational calculus with set-valued attributes and aggregate functions, ACM Transactions
on Database Systems, 12 (4): 566-592.

Petry, F. E., 1996, Fuzzy Databases: Principles and Applications, Kluwer Academic
Publisher.

Roth, M. A,, Korth, H. F. and Batory, D. S., 1987, SQL/NF: A query language for non-1NF
relational databases, Information Systems, 12: 99-114,

Schek, H. J. and Scholl, M. H., 1986, The relational model with relational-valued attributes,
Information Systems, 11 (2): 137-147.

Teorey, T. J., Yang, D. Q. and Fry, I. P., 1986, A logical design methodology for relational
databases using the extended entity-relationship model, ACM Computing Surveys, 18 (2):
197-222.

Venkatramen, S. S. and Sen, A., 1993, Formalization of an IS-A based extended nested
relation data model, Information Systems, 20 (1): 53-57.

Chapter 3

FUZZY SETS AND POSSIBILITY
DISTRIBUTIONS

Fuzzy set theory (Zadeh, 1965), which is interchangeably referred as
fuzzy logic, is a generalization of the set theory and provides a means for the
representation of imprecision and vagueness. In real-world applications,
information is often imperfect. So fuzzy set theory has been applied in a
number of real applications crossing over a broad realm of domains and
disciplines (Cox, 1995; Munakata and Jani, 1994) since its formal start in
1965. Typically, for example, fuzzy set theory has extensively been applied
in the navigation of mobile robots under unknown environments (Lee and
Wu, 2003).

One of the major areas of research in database has been the continuous
effort to enrich existing database models with a more extensive collection of
semantic concepts. One of the semantic needs not adequately addressed by
traditional models is that of imprecision and uncertainty. Traditional models
assume the database model to be a correct reflection of the world being
captured and assume that the data stored is known, accurate, and complete. It
is rarely the case in real life that all or most of these assumptions are met.
Different data models have been proposed to handle different categories of
data quality (or lack thereof) with fuzzy set theory.

3.1 Imperfect Information in Database Modeling

There have been some attempts at classifying various possible kinds of
imperfect information. Inconsistency, imprecision, vagueness, uncertainty,
and ambiguity are five basic kinds of imperfect information in database
systems (Bosc and Prade, 1993; Motor, 1990; Motor and Smets, 1997).

36 Chapter 3

Inconsistency is a kind of semantic conflict when one aspect of the real
world is irreconcilably represented more than once in a database or several
different databases. For example, one has "married" value and "single" value
for Tom’s marital status. Information inconsistency usually comes from
information integration.

Intuitively, imprecision and vagueness are relevant to the content of an
attribute value, and it means that a choice must be made from a given range
(interval or set) of values but it is not known exactly which one to choose per
se. For example, "between 20 and 30 years old" and "young" for the attribute
Age are imprecise and vague values, respectively. In general, vague
information is represented by linguistic terms.

Uncertainty is related to the degree of truth of its attribute value, and it
means that one can apportion some, but not all, of our belief to a given value
or a group of values. For example, the sentence that "I am 95 percent sure
that Tom is married" represents information uncertainty. Notice that the
random uncertainty is described using probability theory.

The ambiguity means that some elements of the model lack complete
semantics, leading to several possible interpretations. For example, it may
not be clear if one person’s salaries stated are per week or month.

Generally, several different kinds of imperfect information can co-exist
with respect to the same piece of information. For example, that it is almost
sure that John is very young involves information uncertainty and vagueness
simultaneously.

3.1.1 Null Values and Partial Values

Imprecise values generally denote a set of values in the form of [ail, ai2,
..., aim] or [ail, ai2] for the discrete and continuous universe of discourse,
respectively, meaning that exactly one of the values is the true value for the
single-valued attribute, or at least one of the values is the true value for the
multivalued attribute. So imprecise information here have two
interpretations: disjunctive information and conjunctive information.

One kind of imprecise information that has been studied extensively is
the well-known null values (Codd, 1986 & 1987, Motor, 1990; Parsons,
1996; Zaniola, 1986), which were originally called incomplete information.
The possible interpretations of null values include

(a) “existing but unknown” (denoted by unk or ¢ in this thesis),

(b) “nomexisting” or “inapplicable” (denoted by inap or L), and

(¢) “no information” (denoted by nin).

A null value on a multivalued object, however, means an “open null value”
(denoted by onul) (Gottlob and Zicari, 1988), i.e., the value may not exist,
has exactly one unknown value, or has several unknown values.

3. Fuzzy Sets and Possibility Distributions 37

Null values with the semantics of “existent but unknown” can be
considered as the special type of partial values that the true value can be any
one value in the corresponding domain, i.e., an applicable null value
corresponds to the whole domain. The notion of a partial value is illustrated
as follows (DeMichiel, 1989; Grant, 1979).

Definition. A partial value on a universe of discourse U corresponds to a
finite set of possible values in which exactly one of the values in the set is
the true value, denoted by {a,, a,, ..., a,} for discrete U or [a;, a,]| for
continua U, in which {aj, ay, ..., an} < U or [a;, a,] < U. Let 1 be a partial
value, then sub (1) and sup (1) are used to represent the minimum and
maximum in the set.

Note that crisp data can also be viewed as special cases of partial values.
A crisp data on discrete universe of discourse can be represented in the form
of {p}, and a crisp data on continua universe of discourse can be represented
in the form of [p, p]. Moreover, a partial value without containing any
element is called an empty partial value, denoted by L. In fact, the symbol L
means an inapplicable missing data (Codd, 1986 & 1987). Null values,
partial values, and crisp values are thus represented with a uniform format.

3.1.2 Probabilistic Values

Information with a stochastic nature is very common in real-world
applications. In order to represent such random uncertainty, probabilistic
values are used (Barbara, Garcia-Molina and Porter, 1992; Cavallo and
Pittarelli, 1987; Dey and Sarkar, 1996, Eiter et al., 2001; Lakshmanan ef al.,
1997; Pittarelli, 1994; Zimanyi, 1997). For a discrete universe of discourse
U, a probabilistic value in U is described by a probability distribution yp.
Here, A probabilistic measure Prob (u) for each u € U is needed, which
denotes the probability that v, takes u, where 0 < Prob (#) < 1. Formally, the
probability distribution p is represented as follows.

yp = {Prob (u)/uy, Prob (1)/u,, ..., Prob (u,)/u,}

It should be noted that, for a probability distribution yp, the following
must hold.

7 Prob(u;) <1

This is not the same as a fuzzy value to be presented in Section 3.2.

38 Chapter 3
3.1.3 Fuzzy Sets in Database Modeling

A large number of data models have been proposed to handle uncertainty
and vagueness. Most of these models are based on the same paradigms.
Vagueness and uncertainty are generally modeled with fuzzy sets and
possibility theory (Zadeh, 1965 & 1978). Many of the existing approaches
dealing with imprecision and uncertainty are based on the theory of fuzzy
sets. Fuzzy information has been extensively investigated in the context of
the relational model (Petry, 1996; Chen, 1999). Recent efforts have extended
these results to object-oriented databases by introducing the related notions
of classes, generalization/specialization, and inheritance (de Caluwe, 1998;
Ma, 2005). In addition, fuzzy data modeling has been investigated in the
context of the conceptual data models such as ER (Zvieli and Chen, 1986),
EER (Chen and Kerre, 1998) and IFO (Vila et al., 1996; Yazici, Buckles and
Petry, 1999; Yazici and Merdan, 1996). More recently, XML data
management is increasingly receiving attention due to the extensive use of
Internet. Fuzzy information modeling in XML is hereby one of the
foundations of implementing Web-based intelligent information processing
(Lee and Fanjiang, 2003).

In the following sections, the basic concepts of fuzzy set theory are
briefly introduced, which are of interest or relevance to the discussions of
successive chapters.

3.2 Representations of Fuzzy Sets and Possibility
Distributions

In 1965, Lofti Zadeh published his innovating paper “Fuzzy Set” in the
journal of Information and Control (Zadeh, 1965). Since then fuzzy set has
been infiltrating into almost all branches of pure and applied mathematics
that are set-theory-based. This has resulted in a vast number of real
applications crossing over a broad realm of domains and disciplines.

Fuzzy data is originally described as fuzzy set by Zadeh (1965). Let U be
an universe of discourse. A fuzzy value on U is characterized by a fuzzy set
Fin U. A membership function

M U-> [0,1]
is defined for the fuzzy set F, where p (u), for each u € U, denotes the

degree of membership of u in the fuzzy set F. Thus the fuzzy set F is
described as follows.

F={ur (u)uy, pr () uy, ..., W (Un)/ 1y}, or

3. Fuzzy Sets and Possibility Distributions 39

F= J-uF ()/u

uel

When i (1) is viewed to be a measure of the possibility that a variable X
has the value u in this approach, where X takes values in U, a fuzzy value is
described by a possibility distribution nty (Zadeh, 1978).

iy = {Ty (uy) 11, Ty () 1, ..., Ty (U} tiy}
Here, my (1), #, € U, denotes the possibility that ; is true. Let my and F be
the possibility distribution representation and the fuzzy set representation for

a fuzzy value, respectively. It is apparent that ny = F is true (Raju and
Majumdar, 1988).

33 Support, Kernel, and a-Cut of a Fuzzy Set

Let U be a universe of discourse and F a fuzzy set in U with the
membership function pz U —> [0,1]. We have then the following notions

related to fuzzy sets.
Support. The set of the elements that have non-zero degrees of

membership in F is called the support of F, denoted by

supp (F) = {u| u € Uand pp(u) > 0}.

Kernel. The set of the elements that completely belong to F is called the
kernel of F, denoted by

ker (F)={u|u e Uand p.-(u)=1}.

a-Cut. The set of the elements which degrees of membership in F are
greater than (greater than or equal to) o, where 0 <o <1 (0 <a < 1), is
called the strong (weak) a-cut of F, respectively denoted by

For={ulu e Uand p. (1) > o}
and

Fo={ulue Uand pur(u) > a}.

The relationships among the support, kernel, and o-cut of a fuzzy set can
be illustrated in Figure 3-1.

40 Chapter 3

4—— supp (F)

Figure 3-1. Support, Kernel, and a-Cut of Fuzzy Sets

Consider the example of a preliminary product design. The value of the
performance parameter capacity is “about 2.5e+03”, which is represented by
the following fuzzy set

F={1.0/2.5¢+03, 0.96/5.0e+03, 0.88/7.5¢+03, 0.75/1.0e+04,

0.57/1.25e+04, 0.32/1.5e+04, 0.08/1.75e+04}.
Then, we have

supp () = {2.5¢+03, 5.0e+03, 7.5¢+03, 1.0e+04, 1.25¢+04, 1.5e+04,

1.75e+04},

ker (F) = {2.5¢+03},

Fosse = {2.5e+03, 5.0e+03}, and

Foss = {2.5¢+03, 5.0e+03, 7.5¢+03}.

3.4 Zadeh’s Extension Principle

The extension principle introduced by Zadeh (1975) has been regarded as
one of the most basic ideas of fuzzy set theory. By providing a general
method, the extension principle has been extensively employed to extend
nonfuzzy mathematical concepts. The idea is to induce a fuzzy set from a
number of given fuzzy sets through a mapping.

Zadeh’s extension principle can also be referred to maximum-minimum
principle sometimes. Let X1, X2, ..., Xn and Y be ordinary sets, f be a

3. Fuzzy Sets and Possibility Distributions 41

mapping from X1 x X2 x ... x Xn to Y such that y = f (x1, x2, ..., xn), P
(Xi) and P (Y) be the power sets of Xi and Y (0 < i < n), respectively. Here,
P (Xi) = {C|C c Xi} and P (Y) = {D|D < Y}. Then f induces a mapping
from P (X1) x P (X2) x ... x P (Xn) to P (Y) with

£(C1,C2, ...,Cn) = {f(x1, X2, ..., xn)jxi € Ci, 0 <i<n},

where Ci < Xi, 0 <i < n. Now, let F (Xi) be the class of all fuzzy sets on Xi,
ie, F(Xi)={},0<i<nandF (Y) be the class of all fuzzy setson Y, i.e., F
(Y) = {}, then f induces a mapping from F (X1) x F (X2) x ... x F(Xn) to F
(Y) such that for all Ai € F (Xi), f (Al, A2, ..., An) is a fuzzy set on Y with

f(A1, A2, ..., An) (¥) =
sup (min (up (K1), 220y (%2), ooy p1p, (X1)), /7 (1)) 2 @
f(x1,x2,.. xn)=y
xie Xi(i=1,2,...,n)

0,/ (»=0

3.5 Operations on Fuzzy Sets

In order to manipulate fuzzy sets (as well as possibility distributions),
several operations, including set operations, arithmetic operations, relational
operations, and logical operations, should be defined.

3.5.1 Set Operations of Fuzzy Sets

Let 4 and B be fuzzy sets on the same universe of discourse U with the

membership functions p4 and pg, respectively. Then we have
Union. The union of fuzzy sets 4 and B, denoted 4 U B, is a fuzzy set on

U with the membership function o 5: U~ [0,1], where

Vu € U, paup (u) = max (g (u), ps ().

Intersection. The intersection of fuzzy sets 4 and B, denoted 4 N B, is a
fuzzy set on U with the membership function Py ~p: U —> [0,1], where

Yu e U, py~p () =min (ny (u), Pz (1)).

Complementation. The complementation of fuzzy set 4, denoted by 4, is
a fuzzy set on U with the membership function p;: U — [0,1], where

42 Chapter 3

Vue Upi(u)=1-p, .

Difference. Based on the above-defined operations, we can obtain the
difference of fuzzy sets B and 4.

B-4=BnAd

Being the same as the classical set theory, the operations on fuzzy sets
satisfy the following properties. Let 4, B, and C be fuzzy sets on U:

(a) Commutativity laws: A U B=BUAd,ANB=BnNA,

(b) Associativity laws: AUB)UC=A4AUBUO),ANBNC=4
NBNO),

(¢) Distribution laws: A U (BN CO)=(AuB nAuO), AN (B
=ANnBuAdn(),

(d) Absorption laws: AU A NB)=A4, AN (A UB)=A,

(e) Idempotency laws: AuAd=4,4ANnA=4,and_

(f) de Morgan laws: AUB=A4NB, ANB=A4UB.

3.5.2 Arithmetic Operations of Fuzzy Sets

Utilizing Zadeh’s extension principle, which can also be referred to
maximum-minimum principle sometimes, arithmetic operations can be
defined. Let 4 and B be fuzzy sets on the same universe of discourse U with
the membership functions p, and pg, respectively, and “0” be an infix
operator. 4 0 B is a fuzzy set on U with the membership function py95 U—
[0,1], where

Vze (]a Haen (Z) =maX;-xey (mln (HA ()C), Lz (y)))

353 Relational Operations of Fuzzy Sets

Fuzzy relational operations are various kinds of comparison operations
on fuzzy sets, namely, equal (=), not equal (#), greater than (>), greater
than or equal (=), less than (<), and less than or equal (<). The definitions of
these fuzzy relational operations are essentially related to the closeness
measures between fuzzy sets and the given thresholds. Semantic equivalence
degree (SE) for fuzzy sets, which will be depicted in Chapter 7, can be used
for this purpose.

Let 4 and B be fuzzy sets on the same universe of discourse U with the
membership functions p, and pg, respectively, and [be a given threshold
value. Then we have

3. Fuzzy Sets and Possibility Distributions 43

() A~y Bif SE(4, B) =3,

(b) A#3 Bif SE (4, B) <P,

(c) 4 =, Bif SE (4, B) <3 and max (supp (4)) > max (supp (B)),

(d) 4 <, Bif SE (4, B) <3 and max (supp (4)) < max (supp (B)),

() A >, Bif4 >, Bor A~ B,and

(f) 4 <, Bif4 <, Bor A~ B.

Now let us have a close look at the fuzzy sets being operators. Three
kinds of fuzzy sets can be identified: simple (atomic) fuzzy set, modified
(composite) fuzzy set, and compound fuzzy set.

Simple (atomic) fuzzy set. A simple fuzzy set such as young or tall is
defined by a fuzzy number with membership function.

Modified (composite) fuzzy set. A modified fuzzy set such as very young
or more or less tall is described by a fuzzy number with membership
function. Note that its membership function is not defined but computed
through the membership function of the corresponding simple fuzzy set. In
order to compute the membership function of modified fuzzy set, some
semantic rules should be used. Let F' is a simple fuzzy set represented by a
fuzzy number in the universe of discourse U and its membership function is
we: U — [0,1], then we have the following rules.

Concentration rule: pyery 7 (u) = (U (u))?

More generally, fyery very . very # (4) = (g (u))> * (s ofvem)

Dilation rule: Mmere or less 7 (1) = (W (U))”2

Compound fuzzy set. A compound fuzzy set such as young M very tall is
represented by simple fuzzy sets or modified fuzzy sets connected by union
(L), intersection (M) or complementation connectors.

Generally speaking, the results of fuzzy relational operations are fuzzy
Boolean. They can be combined with logical operators such as rot (—), and
(A), and or (V) to form complicated logical expression. Such expression can
be used to represent logical conditions for information retrieval and so on. In
the above definitions of the fuzzy relational operations, classical two-valued
logic (2VL), namely, true (7) and false (F), is used because of the use of
threshold values.

In the relational operations of fuzzy sets, there may be some fuzzy
relations such as (rot) close to/around, (not) at lease, and (not) at most etc.
with crisp values in addition to the traditional operators such as >, <, =, #, >,

44 Chapter 3

and <. Now consider fuzzy relations as operators and crisp values as
operands. For 4 6 Y, where A is an attribute, 6 is a fuzzy relation, and Y is
a crisp value, fYisa fuzzy number.

Firstly let’s focus on fuzzy relation “close to (around)”. According to
(Chen and Jong, 1997), the membership function of the fuzzy number “close
to Y (around Y)” on the universe of discourse can be defined by

1
luclose Y (u): u-Y 5
1+()
B

The membership function of the fuzzy number “close fo Y” is shown in
Figure 3-2.

1.0 frmmmmmm e

|
|
I
I
|
T

>

!

]

l

|
Y-B Y Y+B
Figure 3-2. Membership Function of the Fuzzy Number "close to "

It should be noted that the fuzzy number above is a simple fuzzy term.
Based on it, we have the following modified fuzzy terms: “very close to Y,
“very very ... very close to Y”, and “more or less close to Y, which
membership functions can be defined as

Hvery close to Y (u) = (“fclose toY (u))z’

2 x (ti f
uvery very ... very close to Y (U) = (uclose toY (U)) x (times o very)’ and

1/2
K more or less close to Y (u) (uclose toY (ll))

In addition, based on fuzzy number “close to Y”, a compound fuzzy term
“not close to Y’ can be defined. Its membership function is as follows.

3. Fuzzy Sets and Possibility Distributions 45

Mrot close to Y (U) = (1 — Heloseto Y (Ll))

Secondly let’s focus on fuzzy relation “at least” (Bosc and Pivert, 1995
& 1997). The membership function of the fuzzy number “ar least ¥’ on the
universe of discourse can be defined by

O,bu<w
U—aw
”-atleaxtY(u): Y———,(O<u<Y.

-
Lu=Y

The membership function of the fuzzy number “at least ¥’ is shown in
Figure 3-3.

® Y

Figure 3-3. Membership Function of the Fuzzy Number "at least 1"

Based on fuzzy number “at least ¥, a compound fuzzy term “not at least
Y can be defined. Its membership function is as follows.

Maot at least Y (u) = (1 — Hatleast Y (U))

Finally let’s focus on fuzzy relation “ar most”. The membership function
of the fuzzy number “at most ¥’ on the universe of discourse can be defined

by

Lu<Y

5_u,Y<u<5.
Y

Hat most Y (u) =

O,u=6

The membership function of the fuzzy number “ar most ¥’ is shown in
Figure 3-4.

46 Chapter 3

Based on fuzzy number “at most Y, a compound fuzzy term “not at most
Y” can be defined. Its membership function is as follows.

Mot at most Y (u) = (] — Hatmost Y (u))

EEA1] E A1 % 4

The fuzzy relations “close to”, “not close to”, “at least”, “at most”, “not
at least”, and “not at most” can be viewed as “fuzzy equal to”, “fuzzy not
equal to”, “fuzzy greater than and equal to”, “fuzzy less than and equal to”,
“fuzzy greater than”, and “fuzzy less than”, respectively. Using these fuzzy
relations and crisp values, the fuzzy query condition with fuzzy operators,
which has the form A @'Y, is formed.

A

1.0

—>

Y 3
Figure 3-4. Membership Function of the Fuzzy Number "at most V"

3.54 Logical Operations of Fuzzy Sets

Fuzzy logical operations dependent on the representation of fuzzy
Boolean values as well as fuzzy logic. Three logical operations fuzzy not
(=), fuzzy and (X)), and fuzzy or (V), which operands are fuzzy Boolean
value(s) represented by fuzzy sets, are defined in this section.

Fuzzy and. The result of fuzzy and is a fuzzy Boolean value. Fuzzy and
can be defined with “intersection” kinds of operations such as “min”
operation. Let 4: py (u) and B: pg (#) be two fuzzy Boolean values
represented by fuzzy sets on the same universe of discourse U. Then

A A B:min (py (), us (u)), u € U.
Fuzzy or. The result of fuzzy or is a fuzzy Boolean value. Fuzzy or can be
defined with “union” kinds of operations such as “max” operation. Let 4: 4

(u) and B: pp (u) be two fuzzy Boolean values represented by fuzzy sets on
the same universe of discourse U. One has

AV B:max (uy (), ps (), u € U.

3. Fuzzy Sets and Possibility Distributions 47

Fuzzy not. The result of fuzzy not is a fuzzy Boolean value. Fuzzy not can
be defined with “complementation” kinds of operations such as
“subtraction” operation. Let 4: p, (v) be a fuzzy Boolean values represented
by fuzzy sets on the universe of discourse U. One has

=A Q- (W), ue U

References

Barbara, D., Garcia-Molina, H. and Porter, D., 1992, The management of probabilistic data,
IEEE Transactions on Knowledge and Data Engineering, 4 (5): 487-502.

Bosc, P. and Pivert, O., 1995, SQL{: a relational database language for fuzzy querying, /EEE
Transactions on Fuzzy Systems, 3 (1): 1-17.

Bosc, P. and Pivert, O., 1997, Extending SQL retrieval features for the handing of flexible
queries, Fuzzy Information Engineering: A Guided Tour of Applications, D. Dubois, H.
Prade, and R. R. Yager eds., Wiley Computer Publishing, 233-251.

Bosc, P. and Prade, H., 1993, An introduction to fuzzy set and possibility theory based
approaches to the treatment of uncertainty and imprecision in database management
systems”, Proceedings of the Second Workshop on Uncertainty Management in
Information Systems: From Needs to Solutions.

Cavallo, R. and Pittarelli, M., 1987, The theory of probabilistic databases, Proceedings of the
13th VLDB Conference, 71-81.

Chen, G. Q. and Kerre, E. E., 1998, Extending ER/EER concepts towards fuzzy conceptual
data modeling, Proceedings of the 1998 IEEFE International Conference on Fuzzy Systems,
2: 1320-1325.

Chen, G. Q., 1999, Fuzzy Logic in Data Modeling;, Semantics, Constraints, and Database
Design, Kluwer Academic Publisher.

Chen, S. M. and Jong, W. T., 1997, Fuzzy query translation for relational database systems,
IEEE Transactions on Systems, Man and Cybernetics—Part B: Cybernetics, 27 (4): 714—
721.

Codd, E. F., 1986, Missing information (applicable and inapplicable) in relational databases,
SIGMOD Record, 15: 53-78.

Codd, E. F., 1987, More commentary on missing information in relational databases
(applicable and inapplicable information), SIGMOD Record, 16 (1): 42-50.

Cox, E., 1995, Fuzzy Logic for Business and Industry, Massachusetts: Charles River Media,
Inc.

de Caluwe, R., 1998, Fuzzy and Uncertain Object-Oriented Databases: Concepts and
Models, World Scientific Pub Co.

Dey, D. and Sarkar, S. A, 1996, Probabilistic relational mode! and algebra, ACM
Transactions on Database Systems, 21 (3): 339-369.

Eiter, T., Lu, J. J., Lukasiewicz, T. and Subrahmanian, V. S., 2001, Probabilistic object bases,
ACM Transactions on Databases Systems, 26 (3): 264-312,

Gottlob, G. and Zicari, R., 1988, Closed world databases opened through null values,
Proceedings of the 1988 International Conference on Very Large Data Bases, 50-61.

Grant, J., 1979, Partial values in a tabular database model, Information Processing Letters, 9
(2): 97-99.

48 Chapter 3

Lakshmanan, L. V. S., Leone, N., Ross, R. and Subrahmanian, V. S., 1997, ProbView: A
flexible probabilistic database system, ACM Transactions on Database Systems, 22 (3):
419-469.

Lee, J. and Fanjiang, Y. Y., 2003, Modeling imprecise requirements with XML, Information
and Software Technology, 45 (7): 445-460.

Lee, T. L. and Wu, C. J., 2003, Fuzzy motion planning of mobile robots in unknown
environments, Journal of Intelligent and Robotic Systems, 37 (2): 177-191

Ma, Z. M., 2005, Advances in Fuzzy Object-Oriented Databases: Modeling and Applications,
Idea Group Publishing.

Motor, A. and Smets, P., 1997, Uncertainty Management in Information Systems: From
Needs to Solutions, Kluwer Academic Publishers.

Motor, A., 1990, Accommodation imprecision in database systems: issues and solutions,
ACM SIGMOD Record, 19 (4): 69-74.

Munakata, T. and Jani, Y., 1994, Fuzzy systems: an overview, Communications of The ACM,
37 (3): 69-76.

Parsons, S., 1996, Current approaches to handling imperfect information in data and
knowledge bases, /EEE Transactions on Knowledge Data Engineering, 8: 353-372.

Petry, F. E., 1996, Fuzzy Databases: Principles and Applications, Kluwer Academic
Publisher.

Pittarelli, M., 1994, An algebra for probabilistic databases, [EEE Transactions on Knowledge
and Data Engineering, 6 (2): 293-303.

Raju, K. V. S. V. N. and Majumdar, A. K., 1988, Fuzzy functional dependencies and lossless
join decomposition of fuzzy relational database system, ACM Transactions on Database
Systems, 13(2): 129-166.

Vila, M. A., Cubero, J. C., Medina, J. M. and Pons, O., 1996, A conceptual approach for deal
with imprecision and uncertainty in object-based data models, International Journal of
Intelligent Systems, 11: 791-806.

Yazici, A. and Merdan, O., 1996, Extending IFO data model for uncertain information,
Proceedings of Information Processing and Management of Uncertainty in Knowledge-
Based Systems, 3: 1283-1288.

Yazici, A., Buckles, B. P. and Petry, F. E., 1999, Handling complex and uncertain
information in the EXIFO and NF* data models, [EEE Transactions on Fuzzy Systems, 7
(6): 659-676.

Zadeh, L. A., 1965, Fuzzy sets, Information and Control, 8 (3): 338-353.

Zadeh, L. A., 1975, The concept of a linguistic variable and its application to approximate
reasoning, Information Sciences, 8: 119-249 & 301-357; 9: 43-80.

Zadeh, L. A., 1978, Fuzzy sets as a basis for a theory of possibility”, Fuzzy Sets and Systems,
1(1):3-28.

Zaniolo, C., 1984, Database systems with null values, Journal of Computer and System
Sciences, 28 (2): 142- 166.

Zimanyi, E., 1997, Query evaluation in probabilistic relational databases, Theoretical
Computer Science, 171: 179-219.

Zvieli, A. and Chen, P. P., 1986, Entity-relationship modeling and fuzzy databases,
Proceedings of the 1986 IEEE International Conference on Data Engineering, 320-327.

PART 1I
FUZZY CONCEPTUAL DATA MODELING

4. The Fuzzy ER and Fuzzy EER Models

5. The Fuzzy UML Data Model

6. The Fuzzy XML Model

Chapter 4
THE FUZZY ER AND FUZZY EER MODELS

4.1 Introduction

Conceptual data modeling involves conceptual (semantic) data models.
The conceptual data models, as described in Chapter 1, provide the designers
with powerful mechanisms in generating the most complete specification
from the real world. The conceptual data models, e.g., ER/EER and UML,
represent both complex structures of entities and complex relationships
among entities as well as their attributes. Hence, the conceptual data models
play an important role in conceptual data modeling and database conceptual
design.

A major goal for database research has been the incorporation of
additional semantics into the data model. Classical data models often suffer
from their incapability to represent and manipulate imprecise and uncertain
information that may occur in many non-traditional applications in the real
world (e.g., decision-making and expert systems). In order to deal with
complex objects and imprecise and uncertain information in conceptual data
modeling, one needs fuzzy extension to conceptual data models, which allow
imprecise and uncertain information to be represented and manipulated at a
conceptual level.

Fuzzy databases have been extensively studied in last two decades in the
context of the relational database model (see Chapter 7). Current efforts have
been concentrated on fuzzy object-oriented databases (see Chapter 9).
However, less research has been done in modeling imprecision and
uncertainty in conceptual data model. In (Zvieli and Chen, 1986), fuzzy set
theory was applied to some of the basic ER concepts. Fuzzy entity sets,
fuzzy relationship sets and fuzzy attribute sets were introduced in addition to

52 Chapter 4

fuzziness in entity and relationship occurrences and in attribute values.
Consequently, fuzzy extension to the ER algebra (Chen, 1976) has been
sketched. Other efforts to extend the ER model can be found in (Ruspini,
1986; Vandenberghe, 1991). The fuzzy extensions of several major EER
concepts were introduced in (Chen and Kerre, 1998), including
superclass/subclass, generalization/specialization, category, and the subclass
with multiple superclasses. In this chapter, a full fuzzy extension to ER and
EER models and the graphical representations will be presented.

4.2 The Fuzzy ER Model

The extension to the ER data model to incorporate fuzziness was
proposed by Zvieli and Chen (1986), where fuzzy entities, attributes and
relationships are represented in the graphical model. Consequently, fuzzy
extension to Chen’ ER algebra has been sketched.

4.2.1 Three Levels of Fuzziness in Entities, Relationships and
Attributes

The classical ER model, as shown in Chapter 1, describes the real-world
semantics in the terms of entities, relationships, and attributes. Here the
attributes refer to the entity attributes and the relationship attributes. An ER
model generally contains a set of entity types and a set of relationship types
among these entity types, and each entity or relationship type may contain a
set of attributes on one hand. It should be noticed that these sets of entity
types, relationship types, and attributes are crisp. On the other hand, each
entity type, relationship, or attribute may have a number of values.

Date of Birth

Employee Car

Figure 4-1. A Simple ER DataModel

4. The Fuzzy ER and Fuzzy EER Models 53

Example. Let us consider a simple ER model in Figure 4-1, which
contains two entity types and a relationship type, namely, entity types
“Employee” and “Car”, and relationship type “driving”. Assume entity type
“Employee” contains attributes “SS#”, “Drive License”, “Name”, “Date of
Birth”, and “Length”. Also assume that “John Smith” is a value of
“Employee”, which has attribute values <375275613, M000988014861,
John Smith, 9/18/1963, 174>.

Viewed hierarchically from the discussion above, it is not difficult to find
that the ER data model is described in three levels. The first level is model
level, referring to the entity type, relationship type and attribute. In the
example mentioned above, the first level refers to

o entity types: “Employee” and “Car”, “driving”,

¢ relationship type: “driving”, and

e attributes: “SS#”, “Drive License”, “Name”, “Date of Birth”, and

“Length” for “Employee”.
The second level is type/instance level, referring to the instances of an entity
type or a relationship type. In the example mentioned above, the second
level refers to

e entity type/instance: “John Smith” for “Employee”.

The third level is attribute value level, referring to the attribute values of an
entity or relationship instance. In the example mentioned above, the third
level refers to

e attribute values: “375275613”, “M000988014861”, “John Smith”,

“9/18/1963”, “174” for “John Smith”.

The fuzzy extension to the ER data model is hereby carried out in the
three levels. At the first level, entity types, relationship types and attributes
may all be fuzzy sets. That means we only have the partial knowledge that
they possibly belong to the corresponding types, i.e., the ER model. In the
above-mentioned example, for example, relationship type “driving” may
indefinitely belong to the ER model. Since the entity types, relationship
types and attributes may be fuzzy sets in the fuzzy ER model, membership
functions of the fuzzy entity type set, fuzzy relationship type set, and fuzzy
attribute set must be introduced, respectively.

Formally, let E, R, and A4 be the fuzzy entity type set, fuzzy relationship
type set, and fuzzy attribute set of the fuzzy ER model, respectively, and iz,
Lz, and 4 be their membership functions. Then

o for an entity type, say Ei, we have ; (Ei)/Ei, where p (Ei) is the

degree of Ei belonging to £ and 0 < pg (Ei) < 1,

o for a relationship type, say Ri, we have iz (Ri)/Ri, where py (Ri) is the

degree of Ri belonging to R and 0 < p, (Ri) < 1, and

54 Chapter 4

¢ for an attribute of entity type or relationship type, say Ai, we have L,
(4i)/4i, where p, (A4i) is the degree of A4i belonging to 4 and 0 < py
(4 <1,
So in a fuzzy ER model, for example, its entity types may look like
{0.9/Employee, 1.0/Car} and its relationship type may look like
{0.7/driving}. Note that in the classical ER model, the values of p,, n and
1.4 should always be 0 or 1. We omit the entity types, relationship types, and
attributes which membership degrees are 0.

At the second level, for each entity type and relationship type, the sets of
their instances can be fuzzy sets. That is, they reflect possible partial
belonging of the corresponding values to their types.

Formally, let e and » be the fuzzy instance sets of an entity type, say i,
and a relationship type, say Ri, respectively, and p, and p,. be their
membership functions. Then

¢ for an entity instance of fuzzy instance set e to the (fuzzy) entity type,

say ei, we have p, (ei)/ei, where L, (ei) is the degree of ei belonging to
eand 0 < p, (ei) < 1, and

o for a relationship instance of fuzzy instance set » to the (fuzzy)

relationship type, say ri, we have p, (ri)/ri, where p, (i) is the degree
of i belonging to » and 0 < p, (ri) < 1.
Also ., (ei)/ei can be represented by L (ei)/ei and L, (ri)/ri by L (Fi)/r,
where 115 (ei) is the degree of ei being the entity instance of Ei and p; (1) is
the degree of ri being the relationship instance of Ri.

In a fuzzy ER model, for example, its entity instances to an entity type
may look like {1.0/<375275613, M000988014861, John Smith, 9/18/1963,
174>, 0.8/<914825583, M000909116501, Chris Chen, 10/1/1984, 170>}.
Note that in the classical ER model, the values of i, and L, should always be
0 or 1. We omit the entity instances and relationship instances which
membership degrees are 0 in all entity types and relationship types.

At the third level, for each attribute, any of its values can be a fuzzy set.
Suppose we have attribute “Length” and its two values may be “tall” and
“short”.

The three levels of fuzziness in the fuzzy ER data model were presented
in (Zvieli and Chen, 1986). Also the fuzzy ER diagram was introduced to
represent the fuzziness. In order to represent the fuzziness at the first level in
the fuzzy ER diagram graphically, each of the entity types, relationship types
and attributes is connected with a membership degree to replace the
originals, and they are enclosed in the rectangle, diamond-shaped box, and
oval, respectively.

. Let Ei, Ri, and Ai be a fuzzy type, fuzzy relationship type, and attribute,
respectively. Then Figure 4-2 shows fuzzy ER diagram notations with the
first level of fuzziness.

4. The Fuzzy ER and Fuzzy EER Models 55

Fuzziness at the second and third levels is represented with symbol “f”
labeled in the fuzzy ER diagram in (Zvieli and Chen, 1986).

W (EiY/Ei

Wy (EiVED

%
0

Figure 4-2. The Fuzzy ER Diagram Notations with the First Level of Fuzziness

4.2.2 Relationships and Constraints

The participation constraints and the cardinality constraints are two
important semantic constraints in the ER model. Both of them related to the
number of entity instances of each participating entity type. In the classical
ER model, it is not difficult to get the number of entity instances of each
participating entity type because it is known for sure if an entity instance
belongs to the entity type. For the fuzzy ER model, however, there exits the
fuzziness at the second (type/instance) level. An entity instance may be
associated with a degree that the entity instance belongs to the entity type.
The participation constraints and the cardinality constraints should be
extended in a fuzzy context. Without loss of generality, only binary
relationships are considered in the following discussions.

Formally, let Rij be a relationship type of entity types Fi and Ej, denoted
Rij (Ei, Ej). Then Fi is called totally participating in Rij, if

(V ei) (3 €j) (ki (ei) > 0 A pg (€) > O A gy (rij (e, €)) = 1).

Here ei (ej) is the instance of Ei (£]), which degree belonging to Ei (Ej) is
greater than 0. And rij (ei, ¢j) is a relationship instance of entity instances ei
and ej. The totally participation means that every ei of Ei participates in at
least one relationship instance of Rij with a membership degree 1. Besides,
Ei is called partially participating in Rij, if

Fei) (3 ej) (1zi (e1) > 0 A pgi (e)) > 0 A Wi (71 (ed, €))) = 0).

The totally participation requires that for any ***. It is clear that such a
requirement is too strict. Generally the totally participation can be extended

56 Chapter 4

into the notion of fuzzy participation. For any ei of Fi, there exists an ej of
Ej, such that pg;; (#ij (e, ej) > 0. We call Ei fuzzily participates in Rij, if

(V ei) (3 &) (kg (e1) > 0 A pu; (€)) > 0 A pgi (7] (ed, e])) > 0).

It can be seen that a fuzzy participation is associated with a membership
degree. If a threshold A is given, we have the notion of A-participation. Ei is
called A-participating in Rij, if

(V ei) (3 €)) (us (e1) > 0 A g (e]) > 0 A g (rij (e, e))) 2 A A € [0,
.

That is, Ei A-participates in Rij if every ei of Ei participates in at least one
relationship instance of Rij with a membership degree being greater than the
given threshold A.

In the fuzzy ER diagrams, total participation, partial participation, fuzzy
participation and A-participation are displayed as in Figure 4-3.

E —<}> partial participation of £ in R

E =<;> total participation of £ in R

E r___—_—__=<;> fuzzy participation of £ in R
A C .

E === R A-participation of £ in R

Figure 4-3. The Fuzzy ER Diagram of the Participation Constraints

Another constraint of concern for relationships is the cardinality
constrain, referring to the correspondence between the numbers of the
related entity types. Let Rij be the relationship type between entity types Ei
and Ej. In the classical ER model, three kinds of cardinality can be
identified: one-to-one correspondence (1: 1), one-to-many correspondence
(1: n), and many-to-many correspondence (m: n). Here

o 1: 1 means that for each instance ei of Ei, there is at most one instance

of Ej corresponding to ei, and vice versa,

4. The Fuzzy ER and Fuzzy EER Models 57

¢ 1. n means that for each instance ei of Fi, there may exist more than
one instance of Ej corresponding to ei, and for each instance ¢j of Ej,
there is at most one instance of Ei corresponding to ej, and

* 1: n means that for each instance ei of Ei, there may exist more than

one instance of Ej corresponding to ei, and vice versa.

It is clear that the number of the “many” side is a precise integer number in
the classical ER model. In the fuzzy ER model, however, there may exist the
fuzziness at the second level and sometimes the more information on the
partial knowledge about the correspondence between related entity types
have to be modeled. An example is that in a university, a student is allowed
to select “about 10” courses or less in an academic year (Chen, 1999) and we
have a fuzzy many-to-many correspondence for entity types “Student” and
“Course” with relationship type “Select”.

First of all, in the fuzzy ER model, we have fuzzy one-to-many
correspondence, denoted 1: N, for entity types Ei and Ej with relationship
type Rij, where N is a fuzzy set representing “how many” in the “many”
side. That means that for each instance ei of Ei, there may exist as many as
N instance of Ej corresponding to ei, and for each instance ej of Ej, there is
at most one instance of Ei corresponding to ej. Furthermore we can
differentiate two kinds of fuzzy many-to-many correspondence, denoted m:
N and O: N, respectively, for entity types Ei and Ej with relationship type
Rij, where O and N are fuzzy sets. For the former, m: N means that for each
instance ej of Ej, there may exist more than one instance of Ei corresponding
to ej, and for each instance ei of Ei, there may exist as many as N instance of
Ej corresponding to ei. For the later, O: N means that for each instance ei of
Ei, there may exist as many as N instance of Ej corresponding to ei, and for
each instance ej of Ej, there may exist as many as O instance of Ei
corresponding to ej.

In general, in the fuzzy ER model, there are 1: N, m: N, and O: N in
addition 1: 1, 1: n, and m: n. Figure 4-4 depicts diagrammatic representations
of the fuzzy cardinality constrain.

El R E2 El E2

El R E2 El

m n (0] N
El R f) El —<}>— £2

Figure 4-4. Fuzzy Cardinality Ratios

E2

58 Chapter 4
4.3 The Fuzzy EER Model

In order to model information fuzziness in the EER data model, some
notions and notations are introduced in this section based on the issues of
Zvieli and Chen (1986) and Chen and Kerre (1998).

4.3.1 Fuzzy Attribute

In an imperfect EER model, first attributes may have fuzziness at the first
level in the fuzzy ER model, referring to fuzzy attribute sets. In addition,
attribute values may be fuzzy ones based on possibility distribution, which
are the same as the fuzziness at the third level in the fuzzy ER model.
Moreover, there are two kinds of interpretation of a fuzzy attribute value
because of single-valued and multivalued attributes, which are a fuzzy
disjunctive attribute value and a fuzzy conjunctive attribute value. In
connection to these two kinds of fuzzy attribute values, the fuzzy attributes
can be classified into the fuzzy disjunctive one and the fuzzy conjunctive
one. Also a composite attribute may be fuzzy too, either disjunctive or
conjunctive, if one of its components is fuzzy.

single-valued multivalued
attribute attribute

Pr N . ; 25T i i
/ \ 3‘[.tr.|bute‘ with fuzzy /(*\, attrl_bute .w1th fuzzy
" /,“ isjunctive values St conjunctive values
— attribute with attribute with
() null values open null
e

attribute with imprecise
conjunctive values

attribute with imprecise
disjunctive values

single-valued multivalued attribute
attribute with the first with the first level of
level of fuzziness fuzziness

Figure 4-5. Attributes in the Fuzzy EER Model

For the attribute values in the imperfect EER model, in addition to fuzzy
values, imprecise attribute values represented by partial values or value
intervals (Grant, 1979; DeMichiel, 1989; Lipski, 1979) and missing attribute
values should also be identified. Since attributes are either single-valued or

4. The Fuzzy ER and Fuzzy EER Models 59

multivalued, two kinds of imprecise attributes can be found, namely,
disjunctive one and conjunctive one. Missing information, sometimes
referred to null (Codd, 1986 & 1987), is considered as a special case of
imprecise information. A null on a single-valued attribute means no
information, unknown information, or placeholder. A null on a multivalued
attribute, however, means an open null (Gottlob and Zicari, 1988). That is,
the attribute value may not exist, has exactly an unknown value, or has
several unknown values. A composite attribute consists of any kind of the
attribute types above.

Graphical representations of the imperfect attributes mentioned above are
shown in Figure 4-5.

4.3.2 Fuzzy Entity and Relationship

Being the same as the fuzzy ER model, there exist two levels of fuzziness
in entity and relationship types of the fuzzy EER model, which are the first
level fuzziness and the second level of fuzziness.

To graphically represent the entity type with the first level of fuzziness,
one can place membership degrees inside the diagrams of entity and
relationship types in the fuzzy EER data model. For example, let Ei be an
entity type and p (£i) be its degree of membership in the model, then "u
(Ei)YEi" is enclosed in the rectangle. If pu (Ei) = 1, "1/Ei" is usually denoted
by "Ei" simply. In a similar way, the relationship type with the first level of
fuzziness can be represented.

The graphical representations of the entity and relationship types with the
first level of fuzziness are shown in Figure 4-6.

by (EiYEi by (BiYEi @ @

Figure 4-6. Entity and Relationship Types with the First Level of Fuzziness in Fuzzy EER
Model

The graphical representations of the entity and relationship types with the
second level of fuzziness are shown in Figure 4-7.

! E 1 o F < R >

Figure 4-7. Entity and Relationship Types with the Second Level of Fuzziness in Fuzzy EER
Model

60 Chapter 4

It should be noted that in the fuzzy EER model, an entity type with the
first and second level of fuzziness can be an weak one, a relationship type
with the first and second level of fuzziness can be an ownership one, and an
attribute of entity type or relationship type can be simple one, multivalued,
composite, fuzzy (disjunctive or conjunctive), imprecise (disjunctive or
conjunctive), or missing (null or open null).

4.3.3 Fuzzy Generalization/Specialization

Generalization and specialization describe subclass-superclass
“relationship between entity types. Under traditional environment, an entity
type, say Sj, is called a subclass of another entity type, say Ei, and
meanwhile Fi is called a superclass of Sj, if and only for any entity instance
of §j, it must be the entity instance of Ei. Formally,

(Ve)(ee Sj=>ee ki)

In the fuzzy EER model, however, there exist three levels of fuzziness.
Among these three levels of fuzziness, the second level of fuzziness is the
fuzziness in entity type/instance. An entity instance may have a membership
degree with respect to an entity type. The subclass-superclass relationship
between such entity types must be redefined.

Now consider two entity types £i and Sj on U such that they are all fuzzy
sets with membership functions pg and pg, respectively. Then Sj is a fuzzy
subclass of Fi and FEi is a fuzzy superclass of] if and only if the following is
‘true.

(Ve)(e e Unps(e)<py(e))

Suppose that superclass £i has multiple subclasses S1, S2, ..., Sn and their
membership functions are g, Wi, Lsa, - .., and L, respectively, then

(V e) (e € Unmax (ks (), k2 (), -, Bsn (€)) < His ()

That is, the degree that an entity instance belongs to any of subclasses is not
greater than the degree that the entity instance belongs to superclass of the
subclasses.

A generalization defines a superclass from several entity types, generally
being with some common features, while a specialization defines several
subclasses from an entity type according to a certain feature. Considering a
fuzzy superclass Fi and its fuzzy subclasses S, S, ..., S, with membership

4. The Fuzzy ER and Fuzzy EER Models 61

functions L, Wi, Kso, ., and sy, respectively, The following relationship is
true.

(Ve)(VS)(ee UAS € {S1, S .., Su} A ps (€) < g (€))

This means that for each subclass, the degree that an entity instance belongs
to it must be less than or equal to the degree that the entity instance belongs
to superclass of the subclasses.

Furthermore we have the fuzzy total specialization, fuzzy partial
specialization, fuzzy disjoint specialization, and fuzzy overlapping
specialization as follows.

o 51,8, ..., 5, are a fuzzy total specialization of Ei if

(Vey(@S(eeEinSe {S,5, ..., 8} A0 <us(e) £ s (e)

That is, for any of entity instances belonging to supclass with a non-zero
degree, it must belong to one of its subclasses with a non-zero degree as
well. In addition, the later non-zero degree is not greater than the former

non-zero degree.
o 81,8, ..., S, are a fuzzy partial specialization of Fi if

@e)(VS)(ec EinS e {S,S, ..., S} A tsi (€)> 0 A ps (€) = 0)

In other words, there exists entity instance that belongs to supclass with a
non-zero degree but belongs to any of subclasses with a zero degree.
o 5,5, ..., 5, are disjoint if

(Fe) (VS) (V8) (e € UAS € {81, S, ey Sak AS” € {81, Sn,y ...y Sa} A
min (s (e), Ws' (€)) > 0)

This means that there exists no entity instance that belongs to more than one
subclass each with a non-zero degree.
* 5,8, ..., S, are overlapping if

@ (VH(VS)(eeUASe {S5,85, ...5% AS e {5, ...,8} A
min (us (e), Hs' (e)) > 0)

That is, there exists entity instance that belongs to more than one subclass
each with a non-zero degree.

Generalization is the inverse process of specialization. Therefore, there
are fuzzy total generalization, fuzzy disjoint generalization, and fuzzy
overlapping generalization according to the discussion above. It should be

62 Chapter 4

noticed that there is no fuzzy partial generalization, which is consistent with
the situation in the classical EER model.

4.3.4 Fuzzy Category

Let 51, S,, ..., Sy and Ei be fuzzy entity sets with membership functions
Uss, sz, .., Msns and pg, respectively. Then Ei is a fuzzy category of S, S, ...,
S, if

(Ve)Y(3S)(e e EinSe {S,5, ... S0} A ps(e)> ps (€) > 0)

That is, for any of entity instances belonging to category with a non-zero
degree, it must belong to one of its superclasses with a non-zero degree as
well. In addition, the former non-zero degree is not greater than the later
non-zero degree.

Note that the fuzzy category is different from the fuzzy subclass with
more than one fuzzy superclass. Let Ei be a fuzzy subclass and Sy, S5, ..., S,
be its fuzzy superclasses and their membership functions are pg, po B2, s
and Vg, respectively. Then

(Vey(WS(ec EinS e {S1,9, ..., Su} A ps(e) = pg (e) > 0)

4.3.5 Fuzzy Aggregation

In addition to specialization/generalization, aggregation is an abstraction
method for entity types and has been studied in object-oriented databases
and the EER model. However, little attention has been paid to aggregation in
fuzzy object-oriented databases and fuzzy EER data model.

Let Ei be a fuzzy aggregation of fuzzy entity sets S), S, ..., and S, and
their membership functions are p, s, Msz, ., and L, respectively. Then

(Vey(Fe)(@e)..3e)(ecEine, eSine;e Hn...ne, e85,
A Mg () = pst (€1) X Hsz (€2) X ... X gy (€,) # 0).

In other words, for any of entity instances belonging to aggregation with a
non-zero degree, it can be broken down into some parts and as an entity
instance, each part must belong to one of its part entity types with a non-zero
degree. In addition, the product of all of the later non-zero degrees forms the
former non-zero degree.

4. The Fuzzy ER and Fuzzy EER Models 63

The diagrammatic notations in Figure 4-8 are used to represent fuzzy
specialization, category and aggregation in the fuzzy EER model,
respectively.

2~ > Fuzzy Total <7 Fuzzy Total &
{ d | &Disjoint { o ! Overlapping
___. Specialization s._.- Specialization

,,' 5 Fuzz'y.P.artial ,/ s, Fuzzy Partial &
tod ! & Disjoint 1o 1 Overlapping
~.__-" Specialization ~._.-" Specialization

_/ Fuzzy y /L\

4 v Subclass with ; ™, Fuzzy ’ \ Fuzzy

! .
~d Fuzzy Multi- LV } Category VX Aggregation

N
N 7 -

superclasses ~ ;P /\’

Figure 4-8. Fuzzy EER Diagram Notations of Specialization, Category, and Aggregation

Utilizing some notations introduced in this section, a simple fuzzy EER
data model is given in Figure 4-9, where entity type Car is a superclass, and
New Car and Old Car are its two fuzzy subclasses; i.c., they may have fuzzy
instances. Fuzzy entity type Young Employee with fuzzy instances and entity
type Company compose a category and entity type Buyer is formed. Entity
types Young Employee and Company have a fuzzy relationship like; in
particular, the fuzziness in this case is at the level of instance/schema. Entity
type Car is aggregated by four entity types: Engine, Chassis, Interior, and
Radio. Among these four entity types, CD Player is a fuzzy entity type with
membership degree 0.7, which is the fuzziness at the level of schema. Entity
type Engine has three attributes. The attribute Id is a key with perfect values
whereas size and turbo are disjunctive fuzzy attribute and disjunctive
imprecise attribute, respectively.

64 Chapter 4

i Young Employee | Company
T \/ id
’” \\
[
VAR turbo
\ L
% ,/, \\\\
"""""""" 7 \ size)
Buyer ! Ny .
Engine
e Chassis
// N
Car —\ x
_¢/
|_ Interior
///—) N
oo H
/_g\ 0.7/CD Player
Z_ e .

Figure 4-9. A Simple Fuzzy EER Data Model

4.4 Summary

This chapter presents fuzzy extended ER and EER data models to handle
imperfect objects in the real world at a conceptual level. Three levels of
fuzziness are identified in entity and relationship types, attributes, entity and
relationship instances, and attribute values. In particular, based on the second
level of fuzziness, i.e., the fuzziness in entity and relationship
types/instances, some major notions in the EER data model are extended,
including generalization/specialization, categorization, and aggregation. But
the first level of fuzziness, i.e., the fuzziness in entity and relationship types
is not considered when these notions are extended. The corresponding
graphical representations of the fuzzy ER and EER data models are also
developed in this chapter.

4. The Fuzzy ER and Fuzzy EER Models 65

References

Chen, G. Q. and Kerre, E. E., 1998, Extending ER/EER concepts towards fuzzy conceptual
data modeling, Proceedings of the 1998 I[EEE International Conference on Fuzzy Systems,
2: 1320-1325.

Chen, G. Q., 1999, Fuzzy Logic in Data Modeling; Semantics, Constraints, and Database
Design, Kluwer Academic Publisher.

Chen, P. P., 1976, The entity-relationship model: toward a unified view of data, ACM
Transactions on Database Systems, 1 (1) 9-36.

Codd, E. F., 1986, Missing information (applicable and inapplicable) in relational databases,
SIGMOD Record, 15 (4): 53-78.

Codd, E. F., 1987, More commentary on missing information in relational databases
(applicable and inapplicable information), SIGMOD Record, 16 (1): 42-50.

DeMichiel, L. G., 1989, Resolving database incompatibility: an approach to performing
relational operations over mismatched domains, /EEE Transactions on Knowledge and
Data Engineering, 1 (4): 485-493.

Gottlob, G. and Zicari, R., 1988, Closed world databases opened through null values,
Proceedings of the 1988 International Conference on Very Large Data Bases, 50-61.

Grant, J., 1979, Partial values in a tabular database model, Information Processing Letters, 9
(2): 97-99.

Lipski, W., 1979, On semantic issues connected with incomplete information databases, ACM
Transactions on Database Systems, 4 (3): 262-296.

Ruspini, E. 1986, Imprecision and uncertainty in the entity-relationship model, Fuzzy Logic in
Knowledge Engineering, Verlag TUV Rheinland.

Vandenberghe, R. M., 1991, An extended entity-relationship model for fuzzy databases based
on fuzzy truth values, Proceedings of the 1991 International Fuzzy Systems Association
World Congress, 280-283.

Zvieli, A. and Chen, P. P., 1986, Entity-relationship modeling and fuzzy databases,
Proceedings of the 1986 IEEE International Conference on Data Engineering, 320-327.

Chapter 5
THE FUZZY UML DATA MODEL

5.1 Introduction

UML provides a collection of models to capture the many aspects of a
software system (Booch, Rumbaugh and Jacobson, 1998; OMG, 2001).
Notice that while the UML reflects some of the best OO modeling
experiences available, it suffers from some lacks of necessary semantics.
One of the lacks can be generalized as the need to handle imprecise and
uncertain information although imprecise and uncertain information exist in
knowledge engineering and database systems and have extensively being
studied (Parsons, 1996).

In the context of the fuzzy conceptual data models, the ER model has
been extended in (Zvieli and Chen, 1986) using fuzzy set theory. In addition,
in (Chen and Kerre, 1998), fuzzy logic was applied to some of the basic EER
concepts around the notions of subclass and superclass. However, the issues
on fuzzy UML data model have received little attention in the literature.

In this chapter, different levels of fuzziness will be introduced into the
class in the UML and the corresponding graphical representations are given.
The class diagrams of the UML can hereby model fuzzy information.

5.2 The Fuzzy UML Class Model

This section extends the UML class diagrams to model fuzzy data. Since
the constructs of the UML contain class and relationships, the extension to
these constructs should be conducted based on fuzzy sets.

68 Chapter 5

5.2.1 Fuzzy Class

The objects having the same properties are gathered into classes that are
organized into hierarchies. Theoretically, a class can be considered from two
different viewpoints:

(a) an extensional class, where the class is defined by the list of its object

instances, and

(b) an intensional class, where the class is defined by a set of attributes
and their admissible values.

A class is fuzzy because of the following several reasons.

(a) Some objects are fuzzy ones, which have similar properties. A class
defined by these objects may be fuzzy. Then the objects belong to the
class with membership degree of [0, 1].

(b) When a class is intensionally defined, the domain of an attribute may
be fuzzy and a fuzzy class is formed.

(c) The subclass produced by a fuzzy class by means of specialization
and the superclass produced by some classes (in which there is at
least one class who is fuzzy) by means of generalization are also
fuzzy.

Following on the footsteps of (Zvieli and Chen, 1986), we define three
levels of fuzziness. In the context of classes, the three levels of fuzziness are
defined as follows:

(a) Fuzziness in the extent to which the class belongs to the data model
as well as fuzziness on the content (in terms of attributes) of the
class.

(b) Fuzziness related to whether some instances are instances of a class.
Even though the structure of an entity is crisp, it is possible that an
instance of the class belongs to the class with degree of membership.

(¢) The third level of fuzziness is on attribute values of the instances of
the class. An attribute in a class defines a value domain. When this
domain is a fuzzy subset or a set of fuzzy subset, the fuzziness of an
attribute value appears.

In order to model the first level of fuzziness, i.e., an attribute or a class
with degree of membership, the attribute or class name should be followed
by a pair of words WITH mem DEGREE, where 0 < mem < 1 and it is used
to indicate the degree that the attribute belongs to the class or the class
belongs to the data model (Marin, Vila and Pons, 2000). For example,
“Employee WITH 0.6 DEGREE” and “Office Number WITH 0.8DEGREE”
are class and attribute with the first level of fuzziness, respectively.
Generally, an attribute or a class will not be declared when its degree is 0. In
addition, “WITH 1.0 DEGREE” can be omitted when the degree of an
attribute or a class is 1. It should be noted that attribute values might be

5. The Fuzzy UML Data Model 69

fuzzy. In order to model the third level of fuzziness, a keyword FUZZY is
introduced and is placed in the front of the attribute. The second level of
fuzziness, we must indicate the degree of membership that an instance of the
class belongs to the class. For this purpose, an additional attribute is
introduced into the class to represent instance membership degree to the
class, which attribute domain is [0, 1]. We denote such special attribute with
K. In order to differentiate the class with the second level of fuzziness, we
use a dashed-outline rectangle to denote such class.

I

i

1 ID

i Name
 FUZZY Age
i Office WITH 0.8 DEGREE
1
1

Figure 5-1. A Fuzzy Class in the Fuzzy UML

Figure 5-1 shows a fuzzy class PhD Student. Here, attribute Age may
take fuzzy values, namely, its domain is fuzzy. Ph. D. students may or may
not have their offices. It is not known for sure if class PhD Student has
attribute Office. But we know Ph.D. students may have their offices with
high possibility, say 0.8. So attribute Office uncertainly belongs to the class
PhD Students. This class has the fuzziness at the first level and we use “with
0.8 membership degree” to describe the fuzziness in the class definition. In
addition, we may not determine if an object is the instance of the class
because the class is fuzzy. So an additional attribute p is-introduced into the
class for this purpose.

5.2.2 Fuzzy Generalization

The concept of subclassing is one of the basic building blocks of the
object model. A new class, called subclass, is produced from another class,
called superclass by means of inheriting some attributes and methods of the
superclass, overriding some attributes and methods of the superclass, and
defining some new attributes and methods. Since a subclass is the
specialization of the superclass, any one object belonging to the subclass
must belong to the superclass. This characteristic can be used to determine if
two classes have subclass/superclass relationship.

However, classes may be fuzzy. A class produced from a fuzzy class
must be fuzzy. If the former is still called subclass and the later superclass,
the subclass/superclass relationship is fuzzy. In other words, a class is a

70 Chapter 5

subclass of another class with membership degree of [0, 1] at this moment.
Correspondingly, we have the following method for determining
subclass/superclass relationship.

(a) for any (fuzzy) object, if the membership degree that it belongs to the
subclass is less than or equal to the membership degree that it
belongs to the superclass, and

(b) the membership degree that it belongs to the subclass is great than or
equal to the given threshold.

The subclass is then a subclass of the superclass with the membership
degree, which is the minimum in the membership degrees to which these
objects belong to the subclass.

Formally, let A and B be (fuzzy) classes and 3 be a given threshold. We

say B is a subclass of 4 if

(Ve) (B<pp(e)<uale)).

The membership degree that B is a subclass of 4 should be min,g) > s (Us
(e)). Here, e is object instance of 4 and B in the universe of discourse, and
Ha (e) and pg (e) are membership degrees of e to 4 and B, respectively.

It should be noted that, however, in the above-mentioned fuzzy
generalization relationship, we assume that classes 4 and B can only have
the second level of fuzziness. It is possible that classes 4 or B are the classes
with membership degree, namely, with the first level of fuzziness. Assume
that we have two classes 4 and B as follows.

A WITH degree_4 DEGREE

B WITH degree_B DEGREE
Then B is a subclass of 4 if

VeyPB<pg(e) <y (e) A (B <degree B <degree A).

That means that B is a subclass of 4 only if, in addition to the condition that
the membership degrees of all objects to 4 and B must be greater than or
equal to the given threshold and the membership degree of any object to 4
must be greater than or equal to the membership degree of this object to B,
the membership degrees of 4 and B must be greater than or equal to the
given threshold and the membership degree of 4 must be greater than or
equal to the membership degree of B.

Considering a fuzzy superclass 4 and its fuzzy subclasses Bl, B2, ..., Bn
with instance membership degrees |, Wz, Mg, ., and pg,, respectively,
which may have the degrees of membership degree A, degree Bl,
degree B2, ..., and degree Bn, respectively. Then the following relationship
is true.

5. The Fuzzy UML Data Model 71

(Ve) (max (uz (e), s (€), ..., Mg (€)) < Ly (e)) A (max (degree Bl,
degree B2, ..., degree Bn) <degree A)

It can be seen that we can assess fuzzy subclass/superclass relationships
by utilizing the inclusion degree of objects to the class. Clearly such
assessment is based on the extensional viewpoint of class. When classes are
defined with the intensional viewpoint, there is no any object available.
Therefore, the method given above cannot be used. At this point, we can use
the inclusion degree (see Section 7.3) of a class with respect to another class
to determine the relationships between fuzzy subclass and superclass.

Formally, let 4 and B be (fuzzy) classes and the degree that B is the
subclass of 4 be denoted by p (4, B). For a given threshold 3, we say B is a
subclass of A4 if

14, B)=p.

The membership degree that B is a subclass of 4 is clearly | (4, B).

Now let us consider the situation that classes 4 or B are the classes with
membership degree, namely, with the first level of fuzziness. Assume that
we have two classes 4 and B as follows.

A WITH degree_ A DEGREE

B WITH degree B DEGREE
Then B is a subclass of 4 if

(L (4, B)=B) A (B <degree B < degree_A).

That means that B is a subclass of 4 only if, in addition to the condition that
the inclusion degree of 4 with respect to B must be greater than or equal to
the given threshold, the membership degrees of 4 and B must be greater than
or equal to the given threshold and the membership degree of 4 must be
great than or equal to the membership degree of B.

The inclusion degree of a (fuzzy) subclass with respect to the (fuzzy)
superclass can be calculated according to the inclusion degree of the attribute
domains of the subclass with respect to the attribute domains of the
superclass as well as the weight of attributes. The methods for evaluating the
inclusion degree of fuzzy attribute domains and further evaluating the
inclusion degree of a subclass with respect to the superclass can be found in
Chapter 9, where the relationship between subclass and superclass with the
first level of fuzziness is not discussed.

In subclass-superclass hierarchies, a critical issue is multiple inheritance
of class. Ambiguity arises when more than one of the superclasses have
common attributes and the subclass does not declare explicitly the class from

72 Chapter 5

which the attribute is inherited. At this moment, which conflicting attribute
in the superclasses is inherited by the subclass dependents on their weights
to the corresponding superclasses (Liu and Song, 2001; Ma, Zhang and Ma,
2004). Also it should be noted that in fuzzy multiple inheritance hierarchy,
the subclass has different degrees with respect to different superclasses, not
being the same as the situation in classical object-oriented database systems.

In order to represent a fuzzy generalization relation, a dashed peculiar
triangular arrowhead is applied. Figure 5-2 shows a fuzzy generalization
relationship. Here classes Young Student and Young Faculty are all classes
with the second level of fuzziness. That means that the classes may have
some instances (objects), which belong to the classes with membership
degree. These two classes can be generalized into class Youth, a class with
the second level of fuzziness.

Figure 5-2. A Fuzzy Generalization Relationship in the Fuzzy UML

523 Fuzzy Aggregation

An aggregation captures a whole-part relationship between an aggregate
and a constituent part and these constituent parts can exist independently.
Therefore, every instance of an aggregate can be projected into a set of
instances of constituent parts. Formally let 4 be an aggregation of
constituent parts B1, B2, ..., and Bn. For e € A4, the projection of e to Bi is
denoted by evy. Then we have (eim) € B1, (G‘LBZ) e B2, ..., (ei«Bn) € Bn.

A class aggregated from fuzzy constituent parts must be fuzzy. If the
former is still called aggregate, the aggregation is fuzzy. At this point, a class
is an aggregation of constituent parts with membership degree of [0, 1].
Correspondingly, we have the following method for determining fuzzy
aggregation relationship:

(a) for any (fuzzy) object, if the membership degree that it belongs to the
aggregate is less than or equal to the membership degree to which its
projection to each constituent part belongs to the corresponding
constituent part, and

5. The Fuzzy UML Data Model 73

(b) the membership degree that it belongs to the aggregate is great than
or equal to the given threshold.

The aggregate is then an aggregation of the constituent parts with the
membership degree, which is the minimum in the membership degrees to
which the projections of these objects to these constituent parts belong to the
corresponding constituent parts.

Formally let 4 be an fuzzy aggregation of fuzzy class sets B1, B2, ..., and
Bn, which instance membership degrees are 4, Ug. Wm, ., and gy,
respectively. Let B be a given threshold. Then

(Ve)(e e dAP<py(e)<min(us (eds), ke (em)s ..o M (edsn))).

That means that a fuzzy class 4 is the aggregate of a group fuzzy classes B,
B2, ..., and Bn if for any (fuzzy) instance object, if the membership degree
that it belongs to class A is less than or equal to the member degree to which
its projection to anyone of Bl, B2, ..., and Bn, say Bi (1 <i < n), belongs to
class Bi. Besides, for any (fuzzy) instance object, the membership degree
that it belongs to class 4 is greater than or equal to the given threshold. The
membership degree that 4 is an aggregation of class sets B1, B2, ..., and Bn
should be min,p; s> p (Iai (e»LBi)) (1 <1 < n). Here, ¢ is object instance of
A.

Now let us consider the first level of fuzziness in the above-mentioned
classes 4, Bl, B2, ..., and Bn, namely, they are the fuzzy classes with
membership degrees. Let

A WITH degree_4 DEGREE,

B1 WITH degree_BI DEGREE,

B2 WITH degree_ B2 DEGREE,

Bn WITH degree_Bn DEGREE.

Then A4 is an aggregate of Bl, B2, ..., and Bn if

(Ve)leednpB <y (e) <min (U (edp), [Ipe) (ei,;z), eees Mg (edp)) A
degree_A < min (degree_Bl, degree B2, ..., degree_ Bn)).

Here {3 is a given threshold.

It should be noted that the assessment of fuzzy aggregation relationships
given above is based on the extensional viewpoint of class. Clearly these
methods can not be used if the classes are defined with the intensional
viewpoint because there is no any object available. In the following, we
present how to determine fuzzy aggregation relationship using the inclusion
degree.

74 Chapter 5

Formally let 4 be an fuzzy aggregation of fuzzy class sets B1, B2, ..., and
Bn and B be a given threshold. Also let the projection of 4 to Bi is denoted

by Ay Then
min (i (B, Adg), u (B2, A¥p), .., 1 (B, Adpy)) > B.

Here p (Bi, A¥5) (1 < i < n) means the degree to which Bi semantically
includes A4p. The membership degree that 4 is an aggregation of Bl, B2,
..., and Bn is min (0 (B1, Adg), p (B2, Adn), ..., n(Bn, Ady)).

Furthermore, the expression above can be extended for the situation that
A, Bl, B2, ..., and Bn may have the first level of fuzziness, namely, they
may be the fuzzy classes with membership degrees. Let B be a given
threshold and

A WITH degree_4 DEGREE,

B1 WITH degree_BI DEGREE,

B2 WITH degree_B2 DEGREE,

Bn WITH degree Bn DEGREE.
Then 4 is an aggregate of Bl, B2, ..., and Bn if

min (u (B1, AVg), p (B2, A g), ..., 1 (Bn, Adg,)) > B A degree_A < min
(degree_B1, degree B2, ..., degree Bn)).

A dashed open diamond is used to denote a fuzzy aggregate relationship.
A fuzzy aggregation relationship is shown in Figure 5-3. A car is aggregated
by engine, interior, and chassis. In Figure 5-3, the engine is old and we
hereby have a fuzzy class Old Engine with the second level of fuzziness.
Class Old Car aggregated by classes interior and chassis and fuzzy class old
engine is a fuzzy one with the second level of fuzziness.

p——me- L.]

e

1 Old Engine | Interior Chassis

Figure 5-3. A Fuzzy Aggregation Relationship in the Fuzzy UML

5. The Fuzzy UML Data Model 75
524 Fuzzy Association

Two levels of fuzziness can be identified in the association relationship.
The first level of fuzziness means that an association relationship fuzzily
exists in two associated classes, namely, this association relationship occurs
with a degree of possibility. Also it is possible that it is unknown for certain
if two class instances respectively belonging to the associated classes have
the given association relationship although this association relationship must
occur in these two classes. This is the second level of fuzziness in the
association relationship and is caused by such fact that an instance belongs
to the given class with membership degree. Note that it is possible that two
levels of fuzziness mentioned above may occur in association relationship
simultaneously. That means that two classes have fuzzy association
relationship at class level on one hand. On the other hand, the class instances
of these two classes may have fuzzy association relationship at class instance
level.

We can place a pair of words WITH mem DEGREE (0 < mem < 1) after
the role name of an association relationship to represent the first level of
fuzziness in the association relationship. We use a double line with an
arrowhead to denote the second level of fuzziness in the association
relationship.

installing WITH 0.8 DEGREE
CD Player Car
(2)
o=) installing
! CDPlayer E======== Car

Figure 5-4. Fuzzy Association Relationships in the Fuzzy UML

Figure 5-4 shows two levels of fuzziness in fuzzy association
relationships. In (a), it is uncertain if CD player is installed in car and the
possibility is 0.8. So classes CD Player and Car have association
relationship installing with 0.8 membership degree. In (b), it is certain that
CD player is installed in car and the possibility is 1.0. Classes CD Player
and Car have association relationship installing with 1.0 membership

76 Chapter 5

degree. But at the level of instances, there exits the possibility that the
instances of classes CD Player and Car may or may not have association
relationship installing. In (c), two kinds of fuzzy association relationship in
(a) and (b) arise simultaneously.

It has been shown above that three levels of fuzziness can occur in
classes. The classes with the second level of fuzziness generally result in the
second level of fuzziness in the association if this association definitely
exists (that means there is no first level of fuzziness in the association).
Formally, let A and B be two classes with the second level of fuzziness. Then
the instance e of 4 is one with membership degrees i, (¢) and the instance /
of B is one with membership degrees ps (f). Assume the association
relationship between 4 and B, denoted ass (4, B), is one without the first
level of fuzziness. It is clear that the association relationship between e and f,
denoted ass (e, f), is one with the second level of fuzziness, i.e., with
membership degree, which can be calculated by

K (ass (e, f)) = min (k4 (e), ks (7).

The first level of fuzziness in the association relationship can be
indicated explicitly by the designers even if the corresponding classes are
crisp. Assume that A and B are two crisp classes and ass (4, B) is the
association relationship with the first level of fuzziness, denoted ass (4, B)
WITH degree_ass DEGREE. At this moment, p, (¢) = 1.0 and pg (f) = 1.0.
Then

W (ass (e, f)) = degree_ass

The classes with the first level of fuzziness generally result in the first
level of fuzziness of the association if this association is not indicated
explicitly. Formally, let 4 and B be two classes only with the first level of
fuzziness, denoted 4 WITH degree A DEGREE and B WITH degree B
DEGREE, respectively. Then the association relationship between A and B,
denoted ass (4, B), is one with the first level of fuzziness, namely, ass (4, B)
WITH degree_ass DEGREE. Here degree_ass is calculated by

degree ass = min (degree A, degree B).

For the instance e of 4 and the instance f of B, in which p, (¢) = 1.0 and pp
() = 1.0, we have

L (ass (e, f)) = degree_ass = min (degree_A, degree_B).

5. The Fuzzy UML Data Model 77

Finally, let us focus on the situation that the classes are ones with the first
level and the second level of fuzziness and there is an association
relationship with the first level of fuzziness between these two classes,
which is explicitly indicated. Let 4 and B be two classes with the first level
of fuzziness, denoted 4 WITH degree_4 DEGREE and B WITH degree B
DEGREE, respectively. Let ass (4, B) be the association relationship with
the first level of fuzziness between A and B, which is explicitly indicated
with WITH degree ass DEGREE. Also let the instance ¢ of 4 be with
membership degrees p, (e), and the instance f of B be with membership
degrees 3 (). Then we have

p (ass (e, f)) = min (W (e), g (f), degree A, degree B, degree a).

5.2.5 Fuzzy Dependency

Now let us focus on fuzzy dependency relationship between the source
class and the target class. The dependency relationship is only related to the
classes themselves and does not require a set of instances for its meaning.
Therefore, the second level fuzziness and the third level of fuzziness in class
do not affect the dependency relationship.

Fuzzy dependency relationship is a dependency relationship with degree
of possibility. Just like the fuzzy association relationship above, the fuzzy
dependency relationship can be indicated explicitly by the designers or be
implied implicitly by the source class based on the fact that the target class is
decided by the source class. Assume that the source class is a fuzzy one with
the first level of fuzziness. Then the target class must be a fuzzy one with the
first level of fuzziness. The degrees of possibility that the target class is
decided by the source class is the same as the membership degree of source
class.

For source class Employee WITH 0.85 DEGREE, for example, the target
class Employee Dependent should be Employee Dependent WITH 0.85
DEGREE. The dependency relationship between Employee and Employee
Dependent should be a fuzzy one with 0.85 degree of possibility. Notice that,
not being like fuzzy association relationship, only one level of fuzziness can
be identified in a dependency relationship, which is implied by first level of
fuzziness of the source class if it is not given explicitly.

Since the fuzziness of dependency relationship is denoted implicitly by
first level of fuzziness of the source class, a dashed line with an arrowhead
can still be used to denote the fuzziness in the dependency relationship.
Figure 5-5 shows a fuzzy dependency relationship.

78 Chapter 5

Dependent WITH 0.5 DEGREE [---- { Employee WITH 0.5 DEGREE

Figure 5-5. A Fuzzy Dependency Relationship in the Fuzzy UML

In Figure 5-6, we give a simple fuzzy UML data model utilizing some
notations introduced in this chapter. Class Car is a superclass, and New Car
and Old Car are its two fuzzy subclasses, namely, they may have fuzzy
instances. Similarly, class Employee has three fuzzy subclasses Young
Employee, Middle Employee, and Old Employee. Classes Employee and Car
have a fuzzy association relationship using, which fuzziness is at the second
level of fuzziness. Again fuzzy classes Young Employee and New Car have a
fuzzy association relationship /ike, which fuzziness is at the first level of
fuzziness. In addition, class Car is aggregated by three classes: Engine,
Chassis, and Interior. Class Engine has three attributes. The attribute /d and
turbo are ones with crisp values whereas size is a fuzzy attribute that can
take fuzzy value. Classes Chassis and Interior are all crisp classes and they
have no fuzziness at the three levels.

Dependent] Engine
: ID
* Turbo
Employee E-o=== : = ==== > FUZZY Size
~ driving
[
Interior
1D
Dashboard
diaabiaiainie ekl Seat
1 Middle ! : Old !
i Employee ! i Employee !
] Chassis
[PEQUPIR -
i 1 [T
| Emplovee | i NewCar | | ID
' liking WITHO.9DEGREE ~~ 777777~

Figure 5-6. A Fuzzy UML Data Model

5. The Fuzzy UML Data Model 79
5.3 Summary

This chapter presents a fuzzy extended UML to cope with fuzzy as well
as complex objects in the real world at a conceptual level. Different levels of
fuzziness are introduced into the class diagram of the UML and the
corresponding graphical representations are developed. It is not difficult to
see that the classical UML is essentially a subset of the fuzzy UML. When
there is not any fuzziness in the universe of discourse, the fuzzy UML can be
reduced to the classical UML.

It should be noted that the focus of the chapter is on fuzzy data modeling
in the UML. The issues about class operations, constraints in the fuzzy UML
modeling, and mapping of the fuzzy UML data model into object-oriented
databases are not discussed in this chapter.

References

Booch, G., Rumbaugh, J. and Jacobson, 1., 1998, The Unified Modeling Language User
Guide, Addison-Welsley Longman, Inc.

Chen, G. Q. and Kerre, E. E., 1998, Extending ER/EER concepts towards fuzzy conceptual
data modeling, Proceedings of the 1998 IEEE International Conference on Fuzzy Systems,
2: 1320-1325.

Chen, P. P., 1976, The entity-relationship model: toward a unified view of data, ACM
Transactions on Database Systems, 1 (1): 9-36.

Liu, W. Y. and Song, N., 2001, The fuzzy association degree in semantic data models, Fuzzy
Sets and Systems, 117 (2): 203-208.

Ma, Z. M., Zhang, W. J. and Ma, W. Y., 2004, Extending object-oriented databases for fuzzy
information modeling, Information Systems, 29 (5): 421-435.

Marin, N., Vila, M. A. and Pons, O., 2000, Fuzzy types: A new concept of type for managing
vague structures, International Journal of Intelligent Systems, 15:1061-1085.

OMG, 2001, Unified Modeling Language (UML), version 1.4,
http://www.omg.org/technology/documents/formal/uml.htm.

Parsons, S., 1996, Current approaches to handling imperfect information in data and
knowledge bases, IEEE Transactions on Knowledge Data Engineering, 8: 353-372.

Zvieli, A. and Chen, P. P., 1986, Entity-relationship modeling and fuzzy databases,
Proceedings of the 1986 IEEE International Conference on Data Engineering, 320-327.

Chapter 6
THE FUZZY XML MODEL

6.1 Introduction

With the wide utilization of the web and the availability of huge amount
of electronic data, information representation and exchange over the web
become important and XML has been the de-facto standard (Bray, Paoli and
Sperberg-McQueen, 1998). XML and related standards are technologies that
allow the easy development of applications that exchange data over the web
such as e-commerce (EC) and supply chain management (SCM).

In real-world applications, however, information is often vague or
ambiguous. There exist researches on fuzziness in EC and SCM and fuzzy
set theory is used to implement web-based business intelligence (Petrovic,
Roy and Petrovic, 1999; Yager, 2000; Yager and Pasi, 2001). Unfortunately,
being current standard for data representation and exchange over the web,
XML is not able to represent and process imprecise and uncertain data
although databases with imprecise and uncertain information have
extensively been discussed. Currently less research has been done in
modeling and querying imperfect XML data. Only XML with incomplete
information (Abiteboul, Segoufin and Vianu, 2001) and probabilistic data
(Nierman and Jagadish, 2002) in XML have been proposed in research
papers. More recently, Lee and Fanjiang (2003) developed a fuzzy OO
modeling technique schema based on XML to model requirements
specifications and incorporated the notion of stereotype to facilitate the
modeling of imprecise requirements.

In this chapter, we identify multiple granularity of data fuzziness in
XML. Based on possibility distribution theory, we may have possibilities
associated with elements as well as attribute values of elements in XML.

82 Chapter 6

Then we develop a fuzzy XML data model that addresses all of the
fuzziness. Finally we focus on the conceptual design of XML using
conceptual data models. We investigate the conversions from the fuzzy
UML model to the fuzzy XML.

6.2 The Fuzzy XML Model

6.2.1 The Fuzziness in XML

Two kinds of fuzziness can be found in relational model: one is to
associate membership degrees with individual tuples and another is to
represent attribute values with possibility distributions (see Chapter 7 for
details). A membership degree associated with a tuple is interpreted to mean
the possibility of the tuple being a member of the corresponding relation. A
possibility distribution represented an attribute value means we do not know
a crisp value of the attribute but only know the range of values that the
attribute may take and the possibility of each value being true.

XML data is structured and XML can represent imprecise and uncertain
information naturally. In the case of XML, we may have membership
degrees associated with elements. It is also possible to associate possibility
distributions with attribute values of elements. XML restricts attributes to
have a unique single value. We modify the schema in XML to make any
attribute into a sub-element.

Now let us interpret what a membership degree associated with an
element means, given that the element can nest under other elements and
more than one of these elements may have an associated membership
degree. The existential membership degree associated with an element
should be the possibility that the state of the world includes this element and
the sub-tree rooted at it. For an element with the sub-tree rooted at it, each
node in the sub-tree is not treated as independent but dependent upon its root
to node chain. Each possibility in the source XML document is assigned
conditioned on the fact that the parent element exists certainly. In other
words, this possibility is a relative one upon the assumption that the
possibility the parent element exists is exactly 1.0. In order to calculate the
absolute possibility, we must consider the relative possibility in the parent
element. In general, the absolute possibility of an element £ can be obtained
by multiplying the relative possibilities found in the source XML, along the
path from ¢ to the root. Of course, each of these relative possibilities will be
available in the source XML document. By default, relative possibilities are
regarded as 1.0.

6. The Fuzzy XML Model 83

Consider a chain 4 — B — C from the root node A. Assume that the
source XML document contains the relative possibilities Poss (C|B), Poss
(B|4), and Poss (A4), associated with the nodes C, B, and A, respectively.
Then we have

Poss (B) = Poss (B|4) x Poss (4) and

Poss (C) = Poss (C|B) x Poss (B|A) x Poss (A).

Here, Poss (C\B), Poss (B|4), and Poss (4) can be obtained from the source
XML document.

For attribute values of elements, XML restricts attributes to have a
unique single value. It is not difficult to find that this restriction does not
always hold true. It is often the case that some data item is known to have
multiple values — these values may be unknown completely and can be
specified with a possibility distribution. For example, the e-mail address of a
person may be multiple character strings because she or he has several e-
mail addresses available simultaneously. In the case that we do not have
complete knowledge of the e-mail address for Tom Smith, we may say that
the e-mail address may be “TSmith@yahoo.com” with possibility 0.60,
“Tom_Smith@yahoo.com” with possibility 0.85,
“Tom_Smith@hotmail.com” with possibility 0.85, “TSmithi@hotmail.com”
with possibility 0.55, and “TSmith@msn.com” with possibility 0.45. In
contrast, some data item is known to have single unique value. For instance,
the age of a person in year is a unique non-negative integer. If such value is
unknown so far, we can use the following possibility distribution: {0.4/23,
0.6/25, 0.8/27, 1.0/29, 1.0/30, 1.0/31, 0.8/33, 0.6/35, 0.4/37}. Based on the
discussion above, it is clear to find that we have two kinds of interpretation
of a fuzzy data represented by a possibility distribution: fuzzy disjunctive
data and fuzzy conjunctive data.

In summary, we have two kinds of fuzziness in XML
o the first is the fuzziness in elements and we use membership degrees

associated with such elements;

o the second is the fuzziness in attribute values of elements and we use
possibility distribution to represent such values.

Note that, for the latter, there exist two types of possibility distribution
(i.e., disjunctive and conjunctive possibility distributions) and they may
occur in child elements with or without further child elements in the
ancestor-descendant chain.

Figure 6-1 gives a fragment of an XML document with fuzzy data.

1. <universities>

47.

48.
49.
50.
51.

Chapter 6

<university UName = “Oakland University”>
<Val Poss = 0.8>
<department DName = “Computer Science and Engineering”>
<employee FID = “85431095">
<Dist type = “disjunctive”>
<Val Poss = 0.8>
<fname>Frank Yager</name>
<position>Associate Professor</position>
<office>B1024</office>
<course>Advances in Database Systems</course>
</Val >
<Val Poss = 0.6>
<fname>Frank Yager</name>
<position>Professor</position>
<office>Y 1024</office>
<course>Artificial Intelligence</course>
</Val >
</Dist>
</employee>
<student SID = “96421027">
<sname>Tom Smith</name>
<age>
<Dist type = “disjunctive”>
<Val Poss = 0.4>23</Val>
<Val Poss = 0.6>25</Val>
<Val Poss = 0.8>27</Val>
<Val Poss = 1.0>29</Val>
<Val Poss = 1.0>30</Val>
<Val Poss = 1.0>31</Val>
<Val Poss = 0.8>33</Val>
<Val Poss = 0.6>35</Val>
<Val Poss = 0.4>37</Val>
</Dist>
</age>
<sex>Male</sex>
<email>
<Dist type = “conjunctive”>
<Val Poss = 0.60>TSmith@yahoo.com</Val>
<Val Poss = 0.85>Tom_Smith@yahoo.com</Val>
<Val Poss = 0.85>Tom_Smith@hotmail.com</Val>
<Val Poss = 0.55>TSmith@hotmail.com</Val>
<Val Poss = 0.45>TSmith@msn.com</Val>
</Dist>
</email>
</student>
</department >
</Val>
</university>
<university Uname = “Wayne State University”>
</university>

52. </universities >

Figure 6-1. A Fragment of an XML Document with Fuzzy Data

6. The Fuzzy XML Model 85
6.2.2 The Representation Model

Representation of Fuzzy Data in XML Document

It is not difficult to see from the example given above that a possibility
attribute, denoted Poss, should be introduced first, which takes a value in [0,
1]. This possibility attribute is applied together with a fuzzy construct called
Val to specify the possibility of a given element existing in the XML
document.

Consider line 3 of Figure 6-1. <Val Poss = 0.8> states that the possibility of
the given element university being Oakland University is equal to 0.8. For an
element with possibility 1.0, pair <Val Poss = 1.0> and </Val> is omitted
from the XML document.

Based on pair <Val Poss> and </Val>, possibility distribution for an
element can be expressed. Also possibility distribution can be used to
express fuzzy element values. For this purpose, we introduce another fuzzy
construct called Dist to specify a possibility distribution. Typically a Dist
element has multiple Val elements as children, each with an associated
possibility. Since we have two types of possibility distribution, the Dist
construct should indicate the type of a possibility distribution, being
disjunctive or conjunctive.

Again consider Figure 6-1. Lines 24-34 are the disjunctive Dist construct
for the age of student Tom Smith. Lines 38-44 are the conjunctive Dist
construct for the email of student Tom Smith. It should be pointed out that,
however, the possibility distributions in line 24-34 and line 38-44 are all for
leaf nodes in the ancestor-descendant chain. In fact, we can also have
possibility distributions and values over non-leaf nodes. Observe the
disjunctive Dist construct in lines 6-19, which express the two possible
statuses for the employee with ID 85431095. In these two employee values,
lines 7-12 are with possibility 0.8 and lines 13-18 are with possibility 0.6.

DTD Modification
It has been shown that the XML document must be extended for fuzzy
data modeling. As a result, several fuzzy constructs have been introduced. In
order to accommodate these fuzzy constructs, it is clear that the DTD of the
source XML document should be correspondingly modified. In this section,
we focus on DTD modification for fuzzy XML data modeling.
First we define Val element as follows:
<IELEMENT Val (#PCDATA| original-definition)>
<|ATTLIST Val Poss CDATA “1.0">
Then we define Dist element as follows:
<|ELEMENT Dist (Val+)>
<IATTLIST Dist type (disjunctive|conjunctive) “disjunctive”>

86 Chapter 6

Now we modify the element definition in the classical DTD so that all of
the elements can use possibility distributions (Dist). For a leaf element which
only contains text or #PCDATA, say leafElement, its definition in the DTD
is changed from

<IELEMENT leafElement (#PCDATA)>

to

<IELEMENT leafElement (#PCDATA | Dist)>.

That is, leaf element leafElement may be crisp one (e.g., smane of student in
Figure 6-1) and then can be defined as
<IELEMENT leafElement (#PCDATA)>.
Also it is possible that leaf element leafElement may be fuzzy one, taking a
value represented by a possibility distribution (e.g., age of student in Figure
6-1). Then it should be defined as
<IELEMENT leafElement (Dist)>.
Furthermore we have the following definition.
<|ELEMENT Dist (Val+)>
<IATTLIST Dist type (disjunctive|conjunctive) “disjunctive”>
<IELEMENT Val (#PCDATA)>
<IATTLIST Val Poss CDATA “1.0">
For non-leaf element, say nonleafElement, first we should change the
element definition from

<IELEMENT nonleafElement (original-definition)>

to

<IELEMENT nonleafElement (original-definition| Val+ | Dist)>,

and then add
<IELEMENT Val (original-definition)>.

That is, non-leaf element nonleafElement may be crisp (e.g., student in
Figure 6-1) and the can be defined as

<IELEMENT nonleafElement (original-definition)>.
When non-leaf element nonleafElement is fuzzy one, we differentiate two
situations: the element takes a value connected with a possibility degree
(e.g., university in Figure 6-1); the element takes a set of values and each

6. The Fuzzy XML Model 87

value is connected with a possibility degree (e.g., employee in Figure 6-1).
The former element is defined as follows.
<IELEMENT nonleafElement (Val+)>
<IELEMENT Val (originai-definition)>
<IATTLIST Val Poss CDATA “1.0">
The later element is defined as
<|ELEMENT nonleafElement (Dist)>
<IELEMENT Dist (Val+)>
<IATTLIST Dist type (disjunctive|conjunctive) “disjunctive”>
<IELEMENT Val (original-definition)>
<IATTLIST Val Poss CDATA “1.0">
Then the DTD of the XML document in Figure 6-1 is hereby given in

Figure 6-2.

<IELEMENT universities (university*)>
<!|ELEMENT university (Val+)>
<IATTLIST university UName IDREF #REQUIRED>
<lIELEMENT Val (department*)>
<IATTLIST Val Poss CDATA>
<IELEMENT department (employee*, student*)>
<IATTLIST department DName |IDREF #REQUIRED>
<IELEMENT employee (Dist)>
<IATTLIST employee FID IDREF #REQUIRED>
<!ELEMENT Dist (Val+)>
<IATTLIST Dist type (disjunctive)>
<IELEMENT Val (fname?, position?, office?, course?)>
<IATTLIST Val Poss CDATA>
<!IELEMENT student (sname?, age?, sex?, email?)>
<IATTLIST student SID IDREF #REQUIRED>
<IELEMENT fname (#PCDATA)>
<IELEMENT position (#PCDATA)>
<IELEMENT office (#PCDATA)>
<IELEMENT course (#PCDATA)>
<IELEMENT sname (#PCDATA)>
<IELEMENT age (Dist)>
<IELEMENT Dist (Val+)>
<IATTLIST Dist type (disjunctive)>
<IELEMENT Val (#PCDATA)>
<IATTLIST Val Poss CDATA>
<IELEMENT sex (#PCDATA)>
<!IELEMENT email (Dist)>
<IELEMENT Dist (Val+)>
<IATTLIST Dist type (conjunctive)>
<IELEMENT Val (#PCDATA)>

<IATTLIST Val Poss CDATA>

Figure 6-2. The DTD of the Fuzzy XML Document in Figure 6-1

88 Chapter 6

6.3 Conceptual Design of the Fuzzy XML Model with the
Fuzzy UML Model

Since XML lacks sufficient power in modeling real-world data and their
complex inter-relationships in semantics, it is necessary to use other methods
to describe data paradigms and develop a true conceptual data model, and
then transform this model into an XML encoded format. There have been
several proposals for conceptual data modeling of XML schema (XML DTD
or XML Schema). In the following, we present the conceptual design of the
fuzzy XML using the fuzzy UML model.

For our transformation approach, relevant constructs are the fuzzy
extensions of those of UML’s Static View, consisting of the fuzzy classes
and their relationship such as fuzzy association, fuzzy generalization, and
various kinds of fuzzy dependencies. We describe the transformation of
these constructs into DTD fragments.

6.3.1 Transformation of Classes

UML classes are transformed into XML element type declarations
(Conrad, Scheffner and Freytag, 2000). Here the class names become the
names of the element types and the attributes are transformed into element
content description. It is noticed that, in the UML, attribute names are
mandatory whereas the attribute types are optional. In contrast, an element
content only consists of type names in the XML. So it was assumed that
attribute names imply their attribute type names in (Conrad, Scheffner and
Freytag, 2000). When there is no class representing a suitable declaration for
an attribute type, the attribute type is assumed to be an element whose
content type is #PCDATA. In addition, multiplicity specifications of
attributes are mapped into cardinality specifications with specifiers ?, *, and
+, which are used for element content construction.

In the fuzzy UML model, four kinds of classes can be identified, which
are

(a) classes without any fuzziness at the three levels,

(b) classes with the fuzziness only at the third level,

(c) classes with the fuzziness at the second level, and

(d) classes with the fuzziness at the first level.

For the classes in case (a), they can be transformed following the approach
developed in (Conrad, Scheffner and Freytag, 2000). The transformation of
the classes with the third and second levels of fuzziness is of particularly
concern. Instead of formal definitions, in the following, we utilize examples
to illustrate how to transform the classes with the third and second levels of
fuzziness into XML DTD.

6. The Fuzzy XML Model 89

student

sname
FUZZY age
Sex

FUZZY e-mail

employee

]]
] 1
] 1
. ;
| fname '
i position i
] 1
1 office 1
i H
1 course :
1

) 1]
] I

<IELEMENT student (sname?, age?, sex?, email?)>
<IATTLIST student SID IDREF #REQUIRED>
<|ELEMENT sname (#PCDATA)>
<IELEMENT age (Dist)>
<!ELEMENT Dist (Val+)>
<IATTLIST Dist type (disjunctive)>
<IELEMENT Val (#PCDATA)>
<IATTLIST Val Poss CDATA>
<IELEMENT sex (#PCDATA)>
<!ELEMENT email (Dist)>
<!ELEMENT Dist (Val+)>
<IATTLIST Dist type (conjunctive)>
<IELEMENT Val (#PCDATA)>
<IATTLIST Val Poss CDATA>

<IELEMENT employee (Dist)>
<!ATTLIST employee FID IDREF #REQUIRED>
<IELEMENT Dist (Val+)>
<IATTLIST Dist type (disjunctive)>
<IELEMENT Val (fname?, position?, office?, course?)>
<IATTLIST Val Poss CDATA>
<IELEMENT fname (#PCDATA)>
<IELEMENT position (#PCDATA)>
<IELEMENT office (#PCDATA)>
<!IELEMENT course (#PCDATA)>

Figure 6-3. Transformation of the Classes in the Fuzzy UML to the Fuzzy XML

First let us look at class “student” in Figure 6-3. It is clear that this class
has two attributes “age” and “e-mail” taking fuzzy values represented
possibility distributions. In other words, the class has the third level of
fuzziness. While the class name becomes the name of the element type and
the attributes are transformed into element content description, these two
attributes cannot be directly transformed into the element content description
with content type #PCDATA. We should use

<|ELEMENT age (Dist)>

<IELEMENT Dist (Val+)>

<IATTLIST Dist type (disjunctive)>
<IELEMENT Val (#PCDATA)>
IATTLIST Val Poss CDATA>

rather than use

<IELEMENT age (#PCDATA)>.

Similarly, we use

<!IELEMENT email (Dist)>
<IELEMENT Dist (Val+)>

<IATTLIST Dist type (conjunctive)>
<!IELEMENT Val (#PCDATA)>

90 Chapter 6

<IATTLIST Val Poss CDATA>
in place of
<IELEMENT e-mail (#PCDATA)>.
Now let us focus on class “employee” in Figure 6-3. This class has the
second level of fuzziness. That means that the class instances belong to the
class with membership degrees. For such a class, when its class name
becomes the name of the element type, the attributes cannot be transformed
into element content description directly. We should use
<IELEMENT employee (Dist)>
<IATTLIST employee FID IDREF #REQUIRED>
<|ELEMENT Dist (Val+)>
<IATTLIST Dist type (disjunctive)>
<IELEMENT Val (fname?, position?, office?, course?)>
<IATTLIST Val Poss CDATA>

rather than directly use

<IELEMENT employee (fname?, position?, office?, course?)>

<IATTLIST employee FID IDREF #REQUIRED>.

Figure 6-3 depicts the details transforming classes “student” and
“employee” into the fuzzy XML.

An aggregation represents a whole-part relationship between an
aggregate and a constituent part. We can treat all constituent parts as the
special attributes of the aggregate. Then we can transform the aggregations
using the approach to the transformation of classes.

6.3.2 Transformation of Generalizations

The generalization in the UML defines a subclass/superclass relationship
between classes: one class, called superclass, is a more general description of
a set of other classes, called subclasses. Following the same transformation
of classes given above, the superclass and each subclass are all transformed
into the element types in the XML, respectively. Here the element type
originating from the superclass is called a superelement and the element type
originating from a subclass is called a subelement in (Conrad, Scheffner and
Freytag, 2000). Note that a superelement must receive an additional ID
attribute declared #REQUIRED and each subelement must be augmented by
a #REQUIRED IDREF attribute in addition to the transformations that the
class names become the names of the element types and the attributes are
transformed into element content description.

Now consider the fuzziness in the generalization in the fuzzy UML
model. Assume that the superclass and subclasses involved in the
generalization may have fuzziness at the type/instance level (the second
level) or/and at the attribute value level (the third level). The transformation
of such superclass and subclasses can be finished according to the

6. The Fuzzy XML Model 91

transformation of fuzzy classes developed above. Meanwhile the created
superelement and each subelement must be associated with 1D #REQUIRED
and IDREF #REQUIRED, respectively.

Figure 6-4 depicts the transformation of the fuzzy generalization.

E Youth E <IELEMENT Youth (Dist)>
: ' <!ATTLIST Youth yid ID #REQUIRED>
! name ! <!ELEMENT Dist (Val+)>
! ! <IATTLIST Dist type (disjunctive)>
""""" AT <IELEMENT Val (name)>

‘]" <IATTLIST Val Poss CDATA>

<IELEMENT name (#PCDATA)>

Student Young Faculty
<IELEMENT Student (course)>

course FUZZY age <IATTLIST Student sid IDREF #REQUIRED>

<IELEMENT Young Faculty (age)>
<IATTLIST Young Faculty yfid IDREF
#REQUIRED>
<IELEMENT age (Dist)>
<IELEMENT Dist (Val+)>
<IATTLIST Dist type (disjunctive)>
<IELEMENT Val (#PCDATA)>

Figure 6-4. Transformation of the Generalizations in the Fuzzy UML to the Fuzzy XML

6.3.3 Transformation of Associations

Associations are relationships that describe connections among class
instances. An association is a more general relationship that aggregation or
generalization. So basically we can transform the associations in the UML
using the approach to the transformation of generalizations given above.
That is, first the class names become the names of the element types and the
attributes are transformed into element content description. Then each
element transformed must be augmented by a #REQUIRED IDREF attribute
(ISIS XML/EDI Project, 2001), which is an artificial one and from another
class involved in the association.

Since in the fuzzy UML data model, each class involved in an association
may have fuzziness at the type/instance level (the second level) or/and at the
attribute value level (the third level), its transformation must be carried out
according to the transformation of fuzzy classes developed above.

Utilizing the approach, Figure 6-5 depicts the transformation of the fuzzy
association.

92 Chapter 6

Youth E New Car '

. 1

o ke s :

name ===============>: maker ,
FUZZY age ¢ model !
| year !

LM !

<IELEMENT Youth (name, age)>

<IATTLIST Youth ncid IDREF #REQUIRED>
<|ELEMENT name (#PCDATA)>
<IELEMENT age (Dist)>
<IELEMENT Dist (Val+)>

<IATTLIST Dist type (disjunctive)>
<IELEMENT Val #PCDATA)>

<IATTLIST Val Poss CDATA>

<|ELEMENT New Car (Dist)>

<IATTLIST New Car yid ID #REQUIRED>
<IELEMENT Dist (Val+)>

<IATTLIST Dist type (disjunctive)>
<IELEMENT Val (maker, model, year)>

<IATTLIST Val Poss CDATA>
<IELEMENT make #PCDATA)>
<|ELEMENT model (#PCDATA)>
<IELEMENT year (#PCDATA)>

Figure 6-5. Transformation of the Associations in the Fuzzy UML to the Fuzzy XML

6.4 Summary

Fuzzy information modeling in databases provides the foundation for
intelligent information processing, while XML aims to achieving data
representation and exchange over the web and has been the de-facto
standard. Fuzzy databases have extensively been investigated over two
decades and XML is currently a very hot topic in academic and industrial
areas. While these two subjects are being studied separately, the interaction
and/or integration of fuzzy data modeling and XML technologies is another
step towards the development of next generation web-based intelligent
information systems.

In this chapter, by using possibility distribution theory, we have
identified multiple granularity of data fuzziness in the XML, which are
possibilities associated with elements and possibility distributions
representing attribute values of elements. A fuzzy XML data model that
addresses all of the fuzziness has hereby developed. In addition, this chapter

6. The Fuzzy XML Model 93

reports the conceptual design of the fuzzy XML using the fuzzy UML
model.

References

Abiteboul, S., Segoufin, L. and Vianu, V., 2001, Representing and querying XML with
incomplete information, Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, 150-161.

Bray, T., Paoli, J. and Sperberg-McQueen, C. M. (Eds), 1998, Extensible Markup Language
(XML) 1.0, W3C Recommendation, http://www.w3.org/TR/1998/REC-xml-19980210.
Conrad, R., Scheffner, D. and Freytag, J. C., 2000, XML conceptual modeling using UML,

Lecture Notes in Computer Science 1920, Springer, 558-571.

ISIS XML/EDI Project, 2001, Mapping from UML Generalised Message Descriptions to
XML DTDs, http://palvelut.tieke.fi/edi/isis-xmledi/d2/UmiToDtdMapping035.doc.

Lee, J. and Fanjiang, Y. Y., 2003, Modeling imprecise requirements with XML, Information
and Software Technology, 45 (7): 445-460.

Nierman, A. and Jagadish, H. V., 2002, ProTDB: Probabilistic data in XML, Proceedings of
28th International Conference on Very Large Data Bases, 646-657.

Petrovic, D., Roy, R. and Petrovic, R., 1999, Supply chain modeling using fuzzy sets,
International Journal of Production Economics, 59: 443-453.

Routledge, N, Bird, L. and Goodchild, A., 2002, UML and XML schema, Proceedings of the
2002 Australasian Database Conference on Database Technologies.

Yager, R. R. and Pasi, G., 2001, Product category description for Web-shopping in e-
commerce, International Journal of Intelligent Systems, 16: 1009-1021.

Yager, R. R., 2000, Targeted e-commerce marketing using fuzzy intelligent agents, /[EEE
Intelligent Systems, 15 (6): 42-45.

PART III

FUZZY DATABASE MODELS

7. The Fuzzy Relational Databases

8. The Fuzzy Nested Relational Databases
9. The Fuzzy Object-Oriented Databases

10. Conceptual Design of Fuzzy Databases

Chapter 7
THE FUZZY RELATIONAL DATABASES

7.1 Introduction

The relational databases have been proved to be a very useful database
model in information systems and have found wide applications
successfully. However, the relational database model introduced by Codd
(1970) does not deal with imprecise and uncertain data well. The data that is
handled has to be either precise or NULL value. NULL value is used for all
types of impreciseness such as “unknown”, “not-applicable” (many types of
such impreciseness are cited in (ANSI/X3/SPARC, 1975). This model
cannot model the real world accurately (Yazici and George, 1999).

Fuzzy data have been used to model imprecise information in databases
since Zadeh introduced the concept of fuzzy sets (Zadeh, 1965), and the
traditional relational databases have been thereby extended. Much of the
work in the area has been in extending the basic model and query language
to permit the representation and retrieval of imprecise data. A number of
related issues such as data dependencies, implementation considerations and
others have also been investigated in various fuzzy relational database
models.

Three major extended relational models have been proposed as the fuzzy
relational database models (Petry, 1996; Chen, 1999). The first one uses
membership degrees of tuple belonging in [0, 1] instead of only in {0, 1}
(Baldwin and Zhou, 1984; Raju and Majumdar, 1988). The second one uses
the principle of replacing the ordinary equivalence among domain values by
measures of nearness such as similarity relationships (Buckles and Petry,
1982) and proximity relationships (Shenoi and Melton, 1989). The third one
directly uses possibility distributions for attribute values (Prade and

98 Chapter 7

Testemale, 1984). Based these three fuzzy relational database models, there
have also been some mixed models combining them (Rundensteiner,
Hawkes, and Bandler, 1989). The extended possibility-based fuzzy relational
model, for example, is typically one of the mixed models, where not only
possibility distributions are allowed to appear as attribute values but also
proximity (similarity or closeness) relationships are allowed to associate
with the domains.

This chapter mainly focuses on the possibility-based and the extended
possibility-based fuzzy relational databases. In addition to the common
issues in the fuzzy relational databases such as data dependencies, this
chapter particularly investigates the update of the fuzzy relational databases
and the integration of fuzzy multidatabases.

7.2 The Fuzzy Relational Models

In connection to the fuzzy data representations of fuzzy relation,
possibility distribution, and similarity, there exist two basic extended data
models for fuzzy relational databases. One of the data models is based on
similarity relations (Buckles and Petry, 1982), or proximity relation (Shenoi
and Melton, 1989), or resemblance (Rundensteiner, Hawkes, and Bandler,
1989). The other one is based on possibility distribution (Prade and
Testemale, 1984; Raju and Majumdar, 1988). The latter can further be
classified into two categories, i.e. tuples associated with possibilities
(membership degrees) and attribute values represented possibility
distributions (Raju and Majumdar, 1988). The form of an n-tuple in each of
the above-mentioned fuzzy relational model can be expressed, respectively,
as

1= <p15_p29 ---a_pi: '--apn>a

t=<ay, a, ..., a4, ..., Gy, d>
and
t=<nAla TA2y »vvs TCAGs x5 7'[:An>5

where p; ¢ D; with D; being the domain of attribute A;, a; € D;, d € (0, 1],
Ta; 18 the possibility distribution of attribute A; on its domain D;, and m4; (%),
x € Dy, denotes the possibility that x is the actual value of #[Aj].

It is clear that, based on the above-mentioned basic fuzzy relational
models, there should be one type of extended fuzzy relational model

7. The Fuzzy Relational Databases 99

(Rundensteiner, Hawkes, and Bandler, 1989; Chen, Vandenbulcke and
Kerre, 1992), where possibility distribution and resemblance relation arise in
a relational databases simultaneously. The focus of this Chapter is put on
such fuzzy relational databases and generally it is assumed that the
possibility of each tuple in a fuzzy relation is exactly 1.

Definition: A fuzzy relation r on a relational schema R (A1, A2, ..., An) is
a subset of the Cartesian product of D (A1) x D (A2) x ... x D (An), where D
(Ai) may be a fuzzy subset or even a set of fuzzy subset and there is the
resemblance relation on the D (Ai). A resemblance relation Res on D (Ai) is
a mapping: D (Ai) x D (Ai) — [0, 1] such that

(a) for Vx e D(Ai), Res (x,x)=1 (reflexivity)

(b) for V x,y € D (Ai), Res (x, y) =Res (y, x) (symmetry)

Notice that the difference between a resemblance relation Res and a
similarity relation Sim is that Sim needs transitivity in addition to reflexivity
and symmetry. The transitivity means that

for V x, y, z € D (Ai), Sim (x, z) = max, (min (Sim (x,), Sim (y, 2))).

So a similarity relation must be a resemblance relation but a resemblance
relation may not be a similarity relation.

7.3 Semantic Measures and Data Redundancies

7.3.1 Existing Methods

To measure the semantic relationship between fuzzy data, some
investigation results for assessing data redundancy can be found in literature.

Rundensteiner, Hawkes, and Bandler in (1989) proposed the notion
nearness measure. Two fuzzy data n, and g were considered o3 redundant
if and only if the following inequality equations hold true:

minx, y esupp (TA) U supp (TB) (RCS (x> y)) =0

min, . (1 —ma 2) - (2))) 2 B

where o and [3 are the given thresholds, Res (x, y) denotes the resemblance
relation on the attribute domain, and supp (ma) denotes the support of w, . It
is clear that a twofold condition is applied in their study. As noted in (Chen,
Vandenbulcke and Kerre, 1992; Ma, Zhang and Ma, 1999), however,
counterintuitive results are produced with their treatment due to the fact that
two criteria are set separately for redundancy evaluation.

100 Chapter 7

For two data s and ng, Chen, Vandenbulcke and Kerre in (1992) defined
the following approach to assess the possibility and impossibility that ta =
Tg.

Ec (nA: nB) (T) = SUPPx, y el/, c (x,) 2 (mln (nA (x)> L:] (.V)))

Ec (nAa 7TB) (F) = Suppx,y el,c(x,y)<a (mln (nA (.X'), 7B (}’)))

where ¢ (x, y) denotes a closeness relation (being the same as the
resemblance relation). It should be noted that the approach in (Chen,
Vandenbulcke and Kerre, 1992) is an extension of the work in (van
Schooten, 1988; Kerre, 1988). It was shown in (Ma, Zhang and Ma, 1999)
that there are some inconsistencies when the approach proposed in (van
Schooten, 1988; Kerre, 1988) is applied to assess the redundancy of fuzzy
data represented possibility distribution.

In (Cubero and Vila, 1994), the notions of weak resemblance and strong
resemblance were proposed for representing the possibility and the necessity
that two fuzzy values m, and mp are approximately equal, respectively. Weak
resemblance and strong resemblance can be expressed as follows.

LI (s ~ Tig) = SUPPy, cv (Min (Res (x, y), 7a (x), 75 (1))

N (np = mp) = inf; , oy (max (Res (x, y), I — 74 (x), | — 75 (1))

The semantic measures were employed as a basis for a new definition of
fuzzy functional dependencies in (Cubero and Vila, 1994). The weak
resemblance, however, appears to be too ‘‘optimistic’” and strong
resemblance is too severe for the semantic assessment of fuzzy data (Bosc
and Pivert, 1997).

According to the situation that two criteria are set separately for the
redundancy evaluation in (Rundensteiner, Hawkes, and Bandler, 1989), Bosc
and Pivert (1997) gave the following function to measure the
interchangeability that fuzzy value m, can be replaced with another fuzzy
data mg, i.e., the possibility that 7, is close to ntg from the left-hand side:

Hrepl (TEAa 7":B) = infx esupp (TA) (max (1 —TA (X), Hs (TEA; 7T:B) (x))),

where pg (Ta, 7y (x) is defined as

Hs (nAa 7":B) (x) = Supy esupp (nB) (mln (RGS (xa y)a 1~ lnA (X) ~ Ty 07)]))

7. The Fuzzy Relational Databases 101

It follows that an approach of Bosc and Pivert in (Bosc and Pivert, 1997) is
actually an extension of the approach reported in (Rundensteiner, Hawkes,
and Bandler, 1989). As shown in (Ma, Zhang and Ma, 1999), the approach
in (Rundensteiner, Hawkes, and Bandler, 1989) appears to be
counterintuitive. Typically the semantic relationship of inclusion, being a
kind of important relationship between fuzzy data in the assessment of fuzzy
data redundancy, cannot be identified. The same problem also exists in the
approach in (Bosc and Pivert, 1997), which is demonstrated in Section 7.3.3.

Following the discussion above, it can be seen that the semantic measure
of fuzzy data was mainly focused on equivalence relationship in the
literature. To eliminate counterintuitive results in the proposed approaches
and to assess the semantic relationship of fuzzy data in extended possibility-
based fuzzy relational databases, including equivalence and inclusion, we
define a new approach in the following.

7.3.2 Semantic Relationship between Fuzzy Data

Not being the same as precise data, fuzzy data are sets of points in space
instead of points in the universe of discourse. The semantics of a fuzzy data
expressed by possibility distribution corresponds to an area in space, the so-
called semantic space.

Definition: For fuzzy data, its semantics correspond to an area in space,
where the universe of discourse is its X-axis and possibility is its Y-axis.

The semantic relationship between two fuzzy data can be described by
the relationship between their semantic spaces. Let SS (n4) and SS (ng) be
semantic spaces of two fuzzy data m, and mg, respectively. If SS (n4) © SS
(mg) or SS (ms) < SS (mp), ma semantically includes ng or 7, is semantically
included by 7g. If SS (n4) 2 SS (ng) and SS (wa) < SS (ng), T and 7y are
semantically equivalent to each other. It is clear that semantic equivalence is
a particular case of semantic inclusion. We employ semantic inclusion
degree to measure the semantic relationship of fuzzy data.

Definition: Let ma and mg be two fuzzy data, and their semantic spaces be
SS (ma) and SS (ng), respectively. Let SID (m,, mg) denotes the degree that
7t semantically includes ng. Then

SID (4, m8) = (SS () N SS (74))/SS ()

For two fuzzy data m, and mp, the meaning of SID (ma, 7g) is the
percentage of the semantic space of mg which is wholly included in the
semantic space of m,. Following definition 2, the concept of equivalence
degree can be easily drawn as follows.

102 Chapter 7

Definition: Let np and mg be two fuzzy data and SID (ma, 7g) be the
degree that 7, semantically includes ng. Let SE (n5, ©g) denote the degree
that &, and mp are equivalent to each other. Then

SE (74, 18) = min (SID (7, 78), SID (7tg, 7))

7.3.3 Evaluation of Semantic Measures

For two possibility distributions, the semantic inclusion degree is defined
as follows.

Definition: Let U= {uy, w, ..., Uy} be the universe of discourse. Let 7t
and mp be two fuzzy data on U based on possibility distribution and 7a (%),
u; € U, denote the possibility that ; is true. SID (7, mg) is then defined by

SID (7, mg) = Z mizrfl (g (u;), s (u;)) /ZRB (u;)
i=1 W€ i=1

In the above definition, an assumption is made that only the same
element in the domain is relative to each other and the relationship between
different elements are not considered. However, two different elements in
the same domain may be close to each other if there is a resemblance
relation in the domain elements. We, therefore, give the definition for
calculating the semantic inclusion degree of two fuzzy data based on
possibility distribution and resemblance relations in the following paragraph.

Definition: Let U = {uy, u,, ..., uy} be the universe of discourse. Let 7
and g be two fuzzy data on U based on possibility distribution and 7a (),
u; € U, denote the possibility that z; is true. Let Res be a resemblance
relation on domain U, o for 0 < o < 1 be a threshold corresponding to Res.
SID (74, Ts) is then defined by

n

SID (ma, ©tg) = Z min (ng (u;),m, (u;) /ins (u;)

i=1 ui,ujeU,Re,v(ui,uj)Za

Example. Let my = {1.0/a, 0.95/b, 0.9/c} and m; = {0.95/a, 0.9/b, 1.0r/d,
0.3/e} be two fuzzy data on domain U = {a, b, c, d, e, f} and let Res be a
resemblance relation on U given in Figure 7-1. Let threshold o = 0.9. Then

SID (73, M) = {0.95+ 0.9+ 0.9}/{0.95+ 0.9+ 1.0 +0.3} = 0.873,

SID (7, ;) = {0.95 + 0.9 + 0.9}/{1.0 + 0.95 + 0.9} = 0.965,
and thus

7. The Fuzzy Relational Databases 103

SE (m1, 7,) = min (SID (7, 7,), SID (7, 7)) = min (0.873, 0.965) =
0.873.

Res a b c d e f
a 1.0 0.1 0.4 0.3 0.1 0.1
b 1.0 0.2 0.3 0.2 0.2
c 1.0 0.95 0.5 0.3
d 1.0 0.3 0.1
e 1.0 0.4
f 1.0

Figure 7-1. A Resemblance Relation

Now Let us consider the following two particular cases, namely, between
3 = {1.0/a, 1.0/b, 1.0/c} and 7; = {1.0/a, 1.0/b, 1.0/d} and between 75 =
{0.9/a, 1.0/b, 0.8/c} and 7t = {0.3/a, 0.4/b, 0.2/d}. In the similar way above,
we have

SID (3,) = {1.0+ 1.0+ 1.0}/{1.0 + 1.0 + 1.0} = 1.0,

SID (114, m3) = {1.0+ 1.0 + 1.0}/{1.0 + 1.0 + 1.0} = 1.0,
and thus

SE (3, t4) = min (SID (73, T4), SID (74, 73)) = min (1.0, 1.0) = 1.0;

SID (15,) = {0.3+0.4+0.2}/{03+04+0.2}=1.0,

SID (16, 5) = {0.3 + 0.4+ 0.2}/{0.9 + 1.0 + 0.8} = 0.333,
and thus

SE (75, T6) = min (SID (75, 76), SID (76, 7s)) = min (1.0, 0.333) = 0.333.
It follows that 75 semantically includes 75 whereas 7 does not include 7ts. If
we employ the approach proposed in (Bosc and Pivert, 1997), we have

Us (75, T6) (a) = sup (min (1.0, 0.4), min (0.1, 0.5), min (0.3, 0.3)) = 0.4,

Us (185, 15) (b) = sup (min (0.1, 0.3), min (1.0, 0.4), min (0.3, 0.2)) = 0.4,

Us (7ts, 76) (d) = sup (min (0.3, 0.3), min (0.3, 0.2), min (0.95, 0.4)) = 0.4,

Heept (75, T6) = inf (max (0.1, 0.4), max (0.0, 0.4), max (0.7, 0.4)) = 0.4,
and

Us (T, T5) (2) = sup (min (1.0, 0.4), min (0.1, 0.3), min (0.4, 0.5)) = 0.4,

Ks (7, 75) (b) = sup (min (0.1, 0.5), min (1.0, 0.4), min (0.2, 0.6)) = 0.4,

Us (76, 7s) (d) = sup (min (0.4, 0.5), min (0.2, 0.6), min (0.95, 0.4)) = 0.4,

Prepl (T6, Tt5) = inf (max (0.7, 0.4), max (0.6, 0.4), max (0.8, 0.4)) = 0.6.
Finally one obtains

Heq (7Ts, T6) = min (Rrept (75, T6), Keept (T, Ts)) = min (0.4, 0.6) = 0.4.

Not being the same as classical relational databases, semantic inclusion
of fuzzy data is another kind of data redundancy in addition to the
equivalence redundancy. It can be seen from the above evaluation that the
semantic relationship of inclusion between ms and 7 cannot be identified
using the approaches reported in (Bosc and Pivert, 1997).

104 Chapter 7
7.3.4 Fuzzy Data Redundancies and Removal

Following the semantic inclusion degree of fuzzy data, two types of
fuzzy data redundancies: inclusion redundancy and equivalence redundancy
can be classified and evaluated. Being different from the classical set theory,
the condition SS (A) © SS (B) or SS (A) < SS (B) is essentially the
particular case of fuzzy data due to the fuzziness of the data. In general, the
threshold should be considered when evaluating the semantic relationship
between two fuzzy data.

Definition: Let wa and 1tg be two fuzzy data and P be a threshold. If SID (
Ta, T) = P, Tp is said to be inclusively redundant to wa. If SE (74, t8) > B, it
is said that m, and mp are equivalently redundant to each other.

It is clear that equivalence redundancy of fuzzy data is a particular case
of inclusion redundancy of fuzzy data. Considering the effect of resemblance
relation in evaluation of semantic inclusion degree and equivalence degree,
two fuzzy data m, and mp are considered equivalently o-B-redundant if and
only if SE (Tta, 7tg) > B. If SID, (74, g) = P and SID, (7, TTaA) < B, Tp are
inclusively o-f-redundant to 4.

If my and mp are inclusively redundant or equivalently redundant, the
removal of redundancy can be achieved by merging ms and mp and
producing a new fuzzy data mc. Following Zadeh’s extension principle
(Zadeh, 1975), the operation with an infix operator “0” on 75 and 7z can be
defined as follows.

Ta O 7tg = {7a (W)U Jui e UA 1 <i<n} 0 {mg (V)/vi[vje UA1<j<
n} = {max (min (75 (), 7g (v)))/ 4; O vj)lu, vie UA 1 <1, j<n}

Assume that T, and 7y are a-B-redundant to each other, the elimination
of duplicate could be achieved by merging 7 and g and producing a new
fuzzy data mc, where T, Tg and Ttc are three fuzzy data on U= {ul, u2, ...,
un} based on possibility distribution and there is a resemblance relation Res;,
on U. Then the following three merging operations are defined:

e = A Uy T = {Tic (W)/w | (3 Tt (ui)/ui) (3 7t (v))/vj) (e (W) = max (70
a (i), g (V) A (W = e (w) = ma @iy V W = Vilne) = 78 () A Resy (ui,
v)2anAu,vje UA1Zi,j<n)v (3 ma (ui)ui) (VY 1t (v))/V)) (Ttc (W)
=T (ui) Aw=ui A Resy (ui, vi)>anui,vje Un1<i,j<n)v (I ng
/() (Vrea (ui)/ui) (e (w) = 1t (Vj) A w=vj A Resy (ui, vj) > oA
ui,vi e Un1<i,j <n)},

7. The Fuzzy Relational Databases 105

Tic = Ta — g = {Tc (W)/'w | (3 T (ui)/ui) (3 7t (v))/vj) (Tic (W) = max (7
Au)) =71 (v)),) Aw=uin Resy (ui, vi))>aAnui,vje UA1 <0, j<
n) v (3 A (ui)/ui) (V 1ig (vj)/v)) (e (w) = Tp (ui) A w = ui A Resy (ui,
v)<aau,vie Un1<i,j<n)},

and

Tic = Ta (g = {Tc W)/w | (3 7a (wi)/ui) (3 7ts (v))/vj) (T (W) = min (7
A (ui), T3 (vj)) A (W = uifnc (W)= TA (ui) ¥V W= Vilnc (w):nB(vj)) A Resy (ui,
W>anu,vje UA1<i,j<n)}.

Example: Let my = {1.0/a, 0.95/b, 0.9/c, 0.2/f} and 7z = {0.95/a, 0.9/b,
1.0/d, 0.3/e} be two fuzzy data on domain D = {a, b, ¢, d, e, f}. Res is a
resemblance relation on D given in Figure 7-1, where threshold a = 0.9.
Then

SID,, (7ta, 8) =(0.95 + 0.9+ 0.9) / (0.95+ 0.9+ 1.0 + 0.3) = 0.873,

SID, (1tg, 4) =(0.95+ 0.9+ 0.9) /(1.0 + 0.95 + 0.9 + 0.2) = 0.902,
and thus

SE (T, g) = min (SID (7, ©p), SID (7, 4)) = min (0.873, 0.902) =

0.873.

If a threshold B = 0.85 is given, = A and n B are considered redundant to
each other. Utilizing the merging operations above, one has the following
results.

A UrTtg = {1.0/a, 0.95/b, 1.0/d, 0.3/e, 0.2/f},

A — g = {0.05/a, 0.05/b, 0.2/}, and

WINAX: A {095/3, 09/b, 09/C}

The processing of fuzzy value redundancy can be extended to that of
fuzzy tuple redundancy. In a similar way, fuzzy tuple redundancy can be
classified into inclusion redundancy and equivalence redundancy of tuples.

Definition: Let r be a fuzzy relation on the relational schema R (Al, A2,
ooy An) Let r = (TCAl, TCALs +evs ﬂ:An) and " = (TCAla, TCAZ,, ceey TCAH’) be two
tuples in ». Let a € [0, 1] and B € [0, 1] be two thresholds. The tuple # is
inclusively a-B-redundant to ¢ if and only if min (SID, (Ta;, Tai’)) > B holds
true (1 <i<n). The tuples r and ¢’ are equivalently a-f-redundant if and only
if min (SE, (®a;, a;’)) > P holds (1 <i <n).

7.4 Data Integrity Constraints

Data dependencies play a crucial role in logical database design as well
as database manipulation. Some attempts have been taken to represent data
dependencies in fuzzy relational databases, such as fuzzy functional
dependencies (FFDs) (Bosc and Pivert, 2003; Chen et al., 1994 & 1996;

106 Chapter 7

Cubero and Vila, 1994, Liao, Wang and Liu, 1999; Liu, 1992, 1993 & 1997,
Raju and Majumdar, 1988; S6zat and Yazici, 2001) and fuzzy multivalued
dependencies (FMVDs) (Bhattacharjee and Mazumdar, 1998; Jyothi and
Babu, 1997; Liu, 1997; Shenoi and Melton, 1989; Stzat and Yazici, 2001;
Tripathy and Sakena, 1990). Among these data dependencies functional
dependencies are of more interest. Being the same as classical relational
databases, fuzzy functional dependencies can be used as guidelines for the
design of a fuzzy relational schema that is conceptually meaningful and is
free of certain update anomalies. Moreover, fuzzy functional dependencies
and their inferences have been applied in database security, knowledge
discovery (data mining) and reasoning currently (Dutta, 1991; Hale and
Shenoi, 1996).

Fuzzy functional dependencies have received a lot of attention. It is
necessary for the definition of fuzzy functional dependencies to compare the
fuzzy values of the same attributes. Therefore, several definitions of fuzzy
functional dependencies have been proposed on the basis of different
semantic measures. In (Raju and Majumdar, 1988), a fuzzy relation EQUAL
over U x U (U is a universe of discourse) is defined as a fuzzy measure. A
fuzzy functional dependency X — Y holds in a fuzzy relation if for any pair
of tuples, the resemblance on Y-values is greater than that on X-values. The
proposals in (Liu, 1993) and (Liu, 1992; Liao, Wang and Liu, 1999) use the
same definitions of fuzzy functional dependencies with semantic distance
and semantic proximity respectively instead of the fuzzy relation EQUAL.
Based on possibility distribution theory, the closeness degree of fuzzy data
on a domain D is introduced by Chen et al. in (1994 & 1996). A fuzzy
functional dependency X —g¢ Y holds in a fuzzy relation if for any pair of
tuples, the closeness degree for Y-values is at least that of X-values or over
®. In (Cubero and Vila, 1994), a fuzzy functional dependency X —, 5 ¥
holds in a fuzzy relation if for any pair of tuples, that the resemblance on X-
values is greater than the threshold o implies that the resemblance on Y-
values is greater than the threshold 3. Regarding the issues of fuzzy
functional dependencies, an overview is made by Bosc, Dubois and Prade in
(Bosc, Dubois and Prade, 1998), in which different proposals for fuzzy
functional dependencies are analyzed, the connection between fuzzy
functional dependencies and database design are addressed, and some
semantics and use of fuzzy functional dependencies are suggested. Tripathy
and Sakena express fuzzy multivalued dependencies in terms of
particularization and Hamming (1990). S6zat and Yazici (2001) study fuzzy
functional and multivalued dependencies in similarity-based fuzzy relational
database model. With semantic proximity, fuzzy functional, multivalued and
join dependencies are given in (Liu, 1997). Based on the fuzzy relation
EQUAL in (Raju and Majumdar, 1988) and its extension, fuzzy multivalued

7. The Fuzzy Relational Databases 107

dependencies are also defined in (Bhattacharjee and Mazumdar, 1998) and
(Jyothi and Babu, 1997), respectively.

7.4.1 Fuzzy Functional Dependencies

Fuzzy functional dependencies can reflexively represent the dependency
relationships among attribute values in fuzzy relations such as "the salary
almost dependents on the job position and experience". Following the notion
of semantic equivalence degree introduced in Section 7.3, we give the
definition of fuzzy functional dependencies as follows.

Definition: For a relation instance » (R), where R denotes the schema, its
attribute set is denoted by U, and X, Y < U, we say r satisfies the fuzzy
Sfunctional dependency FFD: X — Y, if

(Vi e r)(Vs e r)(SE (£[X], s [X]) <SE (£[Y], s [Y])).

Consider a fuzzy relation instance » in Table 7-1. Assume that attribute
domains Dom (X) = {a, b, ¢, d, ¢} and Dom (Y) = {f, g, h, i, j}. There are
two resemblance relations Res () and Res (¥) on X and Y shown in Figure 7-
2 and Figure 7-3, respectively. Let two thresholds on Res (X) and Res () be
oy = 0.90 and o, = 0.95, respectively.

Table 7-1. Fuzzy Relation Instance »

K X Y
t 1001 {0.7/a, 0.4/b, 0.5/d} {0.9/f, 0.6/g, 1.0/h}
s 1002 {0.5/a, 0.4/c, 0.8/d} {0.6/g, 0.9/h, 0.9/i}
U 1003 {0.3/d, 0.8/e} {0.6/h, 0.4/, 0.1/j}
Res a b c d e

a 1.0 0.2 0.3 0.2 0.4

b 1.0 0.92 0.4 0.1

c 1.0 0.1 0.3

d 1.0 0.2

e 1.0

Figure 7-2. Resemblance Relation on Attribute X

Since
SE (¢ [X], s [X]) = min (SID (¢ [X], s [X]), SID (s [X], £ [X])) = min (0.824,
0.875)=0.824 and
SE (¢[Y], s [Y]) =min (SID (¢ [Y], s [Y]), SID (s [¥], ¢ [Y])) = min (1.0,
0.96) = 0.96,
)

SE (¢ [X], s [X]) < SE (¢[Y], s [Y]).

108 Chapter 7

Similarly, we have
SE (¢ [X], u [X]) < SE (¢[Y], u [Y]) and
SE (s [X], u [X]) < SE (s [Y], u [Y]).
Hence
FFD: X — Yholdsinr.

Res f g h i i
f 1.0 0.3 0.2 0.96 0.2
g 1.0 0.4 0.2 0.3
h 1.0 0.3 0.1
i 1.0 0.4
] 1.0

Figure 7-3. Resemblance Relation on Attribute Y

Theorem 7.1: A classical functional dependency FD satisfies the
definition of FFD.

Proof:

Let FD: X — Y be true. Thenfor Vierand Vs er,t[X]=s[X] > ¢
[Y]=s[Y]. It is evident that SE (¢ [X], s [X]) = min (SID (z [X], s [X]), SID (s
[X], £ [X])) = 1 and SE (¢ [], 5 [Y]) = min (SID (¢ [Y], s [¥]), SID (s [¥], ¢
(Yn=1.

7.4.2 Fuzzy Mutivalued Dependencies

Based on the notion of the semantic equivalence degree, the fuzzy
multivalued dependencies are defined as follows.

Definition: Let r (R) be a fuzzy relation instance on schema R, U be the
set of attributes of R, X, Y < U, and Z = U — XY. We say r satisfies the fuzzy
multivalued dependency FMVD: X — = Y if

Ntern(Vser)(Quer)(SE@[X], t[X])=SE (t[X], s [X]) A SE (u
(Y], 1 [Y]) = SE (¢ [X], s [X]) A SE (u [Z], 5 [Z]) = SE (¢ [X], s [X])).

Table 7-2. Fuzzy Relation Instance s

K X Y Z
{1001 {0.4/a, 0.6/b, 0.7/d) {0.6/g, 0.9/h, 0.8/i} £0.5/a, 0.7/c, 0.4/}
s 1002 {0.4/c,0.5/d,0.2/e} {0.3/h, 0.6/, 1.04} {0.2/b, 0.5/c, 0.9/, 0.8/f}
u 1003 {0.4/a,0.5/b,0.6/d} {0.6/g,0.7/h, 0.8/f} £0.6/d, 1.0/, 0.7/f}

Consider a fuzzy relation instance s in Table 7-2. Assume that attribute
domains Dom (X) = {a, b, c, d, e}, Dom (Y) = {f, g, h, i, j}, and Dom (Z) = {a, b,
¢, d, e, f}. There are three resemblance relations Res (X), Res (Y), and Res (Z) on
X, Y, and Z in Figure 7-2, Figure 7-3, and Figure 7-1, respectively. Let three

7. The Fuzzy Relational Databases 109

thresholds on Res (X), Res (¥), and Res (Z) be ol = 0.90, o2 = 0.95, and o3 =
0.90, respectively. Then
SE (¢ [X], s [X]) = min (SID (¢ [X], s [X]), SID (s [X], ¢ [X])) = min (0.818,
0.529) =0.529
SE (¢ [X], u [X]) = min (SID (¢ [X], u [X]), SID (u [X], ¢ [X])) = min (1.0, 0.882)
=0.882>SE (t [X], s [X]
SE (¢ [Y], u [¥Y])=min (SID (¢ [¥], u [Y]), SID (« [Y], ¢ [¥])) = min (1.0, 0.913)
=0913>SE (¢ [X], s [X])
SE (s [Z], u [Z]) = min (SID (s [Z], u [Z]), SID (u [Z], s [Z])) = min (0.913,
0.875)=0.875> SE (z [X], s [X])
Hence

FMVD: X — < Yholdsinr.

Theorem 7.2 A classical multivalued dependency MVD satisfies the
definition of FMVD.

Proof:

Let relational instance » (R) satisfies MVD: X —>— Y, where X, Y ¢ R,
andZ=R-XV.ThenVter,Vserandt[X]|=s[X|>@Quer)(ulX]=
tiX] aulY]=¢t[Y] AulZ]=s [Z]). Accordingly, SE (u [X], t [X]) = SE (u
(Y1, ¢ [YD) = SE (u [Z], s [2]) = SE (¢ [X], s [X]) = L.

7.4.3 Reference Rules for Fuzzy Data Dependencies

In classical relational databases, functional and multivalued dependencies
satisfy the inference rules, namely, the axiom systems (Armstrong, 1974;
Beeri, Fagin and Howard, 1977). According to the definitions of the fuzzy
functional and multivalued dependencies based on the semantic equivalence
degree, a set of the inference rules for FFD and FMVD can be derived,
which are similar to that for D and MVD in classical relational databases.
We call it fuzzy axiom systems. It can be proven that the fuzzy axiom
systems are sound and complete.

The reference rules for FFDs:

FA1 (Reflexivity): If Y c X < U, then X = Y.

FA2 (Augmentation): If X — Y and Z ¢ U, then XZ — YZ.

FA3 (Transitivity): If X < Yand Y = Z, then X = Z.

FA9 (Union): If X = Yand X — Z, then X — YZ.

FA10 (Decomposition): If X = YZ, then X = Yand X = Z.

FA11 (Pseudotransitivity): If X = Yand YW < Z, then XW — Z.

Theorem 7.3: The inference rules FA1-FA3 and FA9-FA11 are sound.

Proof:

(1) Since Y X, we have SE (¢ [X], s [X]) < SE (¢ [Y], s [Y])for V¢ e r
and V s € r from the definition of the semantic equivalence of tuples.

110 Chapter 7

(2) Since FFD: X — Y holds in arelation r, SE (¢ [X], s [X]) < SE (¢ [Y], s
[Y]forV ¢t e rand Vs € r, we have min (SE (¢ [X], s [X]), SE (¢ [Z], s [Z]))
< min (SE (¢ [Y], s [Y]), SE (¢ [Z], s [Z])), i. e., SE (¢t [XZ], s [XZ]) < SE (¢
[YZ], s [YZ]).

(3) If X = Yand Y — Z, then SE (¢ [X], s [X]) < SE (¢ [Y], s [Y]) and SE
([Y],s[YD<SE([Z],s[Z]) for V t € rand V s € r, thus SE (¢ [X], s [X])
<SE(t[7], s [Z]), that is, X — Z.

(4) The decomposition rule and the pseudotransitivity rule follow easily
from FA1-FA3

(5) Now we prove the union rule. Since X — ¥, so we may augment X to
X = XY by FA2. Also for X — Z, we may augment ¥ to XY — YZ by FA2.
By transitivity, X — XY and XY — YZ imply X - YZ.

The reference rules for FMVDs:

FA4 (Complementation): If X = = ¥, then X — < (U - XY).

FAS (Augmentation): If X —— Yand V< W, then WX — < VY.

FAG6 (Transitivity): If X -~ Yand ¥ - Z then X =< (Z-).

FA12 (Union): If X =~ Yand X —— Z, then X —— YZ.

FA13 (Decomposition): If X - — Yand X —-— Z, then X -~ Y~ Z and

X (Y-2).

FA14 (Pseudotransitivity): f X << Yand YW -~ Z, then XW — — (Z -

Yw).

Theorem 7.4: The inference rules FA4-FA6 and FA12-FA 14 are sound.

Proof:

Proofs of FA4, FA6, and FA12 follow directly from the proofs in (Beeri,
Fagin and Howard, 1977; Bhattacharjee and Mazumdar, 1998; Tripathy and
Sakena, 1990). The decomposition rule follows easily from FA4 and FA12
and the pseudotransitivity rule follows easily from FAS5 and FA®6.

We prove FAS in the following. Since FMVD: X = — Y hold in a relation
r, SE (u [X], t [X]) 2 SE (¢ [X], s [X]), SE (u [Y], ¢ [Y]) = SE (¢ [X], s [X]), and
SE (u[U-XY], s [U-XY]) 2 SE (¢ [X], s [X]) for ¢, s, and u € ». We have
min (SE (u [X], ¢ [X]), SE (u [W], t [W])) = min (SE (¢ [X], s [X]), (z [¥], s
[W])) and min (SE (u [Y], 1 [Y]), SE (u [V], ¢ [V'])) 2 min (SE (¢ [X], s [X]),
SE (u [V), t [V]) = min (SE (¢ [X], s [X]), (t [W], s [W])) because of V < W.
Besides, SE (u [U - XYWV], s [U- XYWV])>SE (u [U-XY],s [U- XY]) >
SE (¢ [X], s [X]) = SE (¢ [WX], s [WX]). So WX —— VY holds in r.

The mixed reference rules for FFDs and FMVDs:

FA7:1If X - Y, then X - - Y.

FAB: If X == Y, Zc Y, WnNnY=®,and W - Z,then X — Z.

Theorem 7.5: The inference rules FA7-FAS are sound.

Proof:

(1) Suppose X == Y not hold in r. Then SE (u [Y], ¢ [Y]) <SE (¢ [X], s
(XD or SE (u [Z], s [Z]) < SE (¢ [X], s [X]) when SE (u [X], ¢ [X]) = SE (« [X],

7. The Fuzzy Relational Databases 111

s [X]). Since X — Y hold in », we have SE (¢ [X], s [X]) <SE (¢{Y], s [Y]), SE
(u [X], ¢ [X]) < SE (u [Y], 7 [Y]), and SE (u [X], s [X]) < SE (u [Y], s [Y]). If
SE (u [Y], t [Y]) < SE (¢ [X], s [X]), then we have SE (7 [X], s [X]) <(u [X], ¢
[XD<SE (u[Y], t[Y]) <SE (¢ [X], s [X]). There is a contradictory. Similarly,
using FA2 (Augmentation) and Proposition 1, we can draw that there exists a
contradictory if SE (u [Z], s [Z]) < SE (¢ [X], s [X]).

(2) Suppose that X — < Yand W — Z hold in a relation 7 (R), where W
NY=®and Zc ¥, but X — Z does not hold in». Then there are tuple ¢ and
s in r such that SE (¢ [X], s [X]) > SE (¢ [Z], s [Z]). By X — = Y applied to ¢
and s, there is a tuple u in » such that SE (v [X], t [XD 2 a, SE (u [Y], ¢t [Y] =
o, and SE (¢ [R - XY], s [R - XY]) = o, where SE (¢ [X], s [X]) = a. Since W
N Y=®and W< X(R - XY), hence SE (u [W], s [W]) = SE (u [X(R - X)), s
[X(R - XV)]) = min (SE (v [X], s [X]), SE(u [R-XY],s [R-XY])) =2 As Z
c Y,SE(u[Z], t[Z]) = SE (u [Y], ¢t [Y]) = . Hence SE (u [Z], s [Z]) < SE (¢
[X], s [X]), and then SE (u [W], s [W]) > SE (u [Z], s [Z]). This contradicts W
— Z. So we can conclude that X — Z holds in r.

Theorem 7.6: The inference rules FA1-FA14 are complete.

Progf 11990,

Let F, G be the sets of FFDs and FMVDs on the universe of discourse U,
respectively. The theorem means that any FFD: f=A4 — Band FMVD: g=C
<< D, which are logically implied by F and G, can be deduced from F and
G by FA1-FA14.

Let (F, G)+ be the closures of F and G. For a give FFD: f=A — Bor
FMVD: g =C —— D that not belong to (F, G)+, there exists an instance » on
U such as all dependencies in F and G are validinrbut4 - BorC = - D
is invalid in 7.

Let F', G' be two sets of classical dependencies, which correspond to F,
G,namely, F'={X> Y X = Ye F},G'={X>> JX == Y e G}. Let
FD: f=4 — Band MVD: g'= C —-— D. We can construct a relational
instance 7/, which satisfies F' and G’ but does not satisfy /' and g’. By
Theorem 7.1 and Theorem 7.2, we know that ' satisfies /" and G but does
not satisfy f and g. This problem transformed into the correspondence
classical problem (Beeri, Fagin and Howard, 1977).

Theorem 7.7: The inference rules FA1-FA14 are sound and complete.

The soundness of inference rules follow from Theorem 7.4 and Theorem
7.5 and the completeness of inference rules follow from Theorem 7.6.

112 Chapter 7

7.5 Fuzzy Algebra Operations

7.5.1 Fuzzy Relational Algebra

Union: Let r and s be two union-compatible fuzzy relations on the
scheme R (Al, A2, ..., An). Let a = {aijai € [0, 1] A 1 <i < n} be the
threshold of the resemblance relations on attribute domains and f € [0, 1] be
a given threshold. Then the union of these two relations is defined as
follows. It is clear that fuzzy union is essentially a o-3-union.

rus={t|(vVv)y(vesanter=SE.(t,VW<B)v(Vu(uerntes
S SEe(t,) <B)v({(@uwy@vI(ueranves=>SE«(u,v)Z2pAt=u
Urv)}

Let » and s be two fuzzy relations shown respectively in Table 7-3 and
Table 7-4, where there is a resemblance relation on attribute “4ge” given in
Figure 7-3 and its threshold is given as o = 0.9. Another threshold is given as
B = 0.8 (the same is in the following examples).

Table 7-3. Fuzzy Relation r

D Dept Age
ul 9106 CS {0.3/19, 0.8/20, 0.7/21}
ul 9107 CS {0.6/30, 0.9/31, 0.7/32}
u3 9711 EE {0.5/32, 0.7/33, 0.6/34}

Table 7-4. Fuzzy Relation s

1D Dept Age

vl 9106 CS {0.8/20, 0.7/21}

v2 9108 CS {0.5/32, 0.8/33, 0.6/34}

v3 9711 EE {0.8/32, 0.6/33, 0.7/34}
Res 30 31 32 33 34 35
30 1.0 0.5 0.4 0.3 0.2 0.2
31 1.0 0.6 0.5 04 0.3
32 1.0 0.7 0.6 0.5
33 1.0 0.8 0.7
34 1.0 0.95
35 1.0

Figure 7-4. Resemblance Relation on Attribute Age

It is clear that tuple %2 in » and tuple v2 in s are not redundant. Now let us
look at the semantics between u1 and v1 as well as »3 and v3.

7. The Fuzzy Relational Databases 113

SEgo (ul (4ge), v1 (Age)) = min (SIDg (11 (4Age), v1 (Age)), SIDgo (v1
(Age), ul (4ge))) = min ((0.8 + 0.7)/(0.8 + 0.7), (0.8 + 0.7)/(0.3 + 0.8
+0.7)) =min (1.0, 0.83) = 0.83 > B,

and

SEy (43 (Age), v3 (Age)) = min (SIDg (43 (Age), v3 (Age)), SIDg 4 (v3
(Age), u3 (Age))) = min ((0.5 + 0.6 + 0.6)/(0.8 + 0.6 + 0.7), (0.5 + 0.6
+0.6)/(0.5 + 0.7 + 0.6)) = min (0.81, 0.94) > .

Therefore,

SEog (u1, v1) = min (SEys (1 (Card), vl (Card)), SE¢ (ul (Dept), v1
(Dept)), SEgq (ul (Age), v1 (Age))) =min (1, 1,0.83)=0.83 > j,

and

SEgo (43, v3) = min (SEgy (u3 (Card), v3 (Card)), SEqo (13 (Dept), v3
(Depr)), SEq o (13 (Age), v3 (Age))) = min (1, 1, 0.81)=0.81 > f.

One can conclude that tuple ul in # and tuple v1 in s are redundant and tuple
43 in ¥ and tuple v3 in s are redundant. According to the definitions of fuzzy
union and “/”, the result relation of union of » and s is shown in Table 7-5.

Table 7-5. The Union Operation » U s

ID Dept Age
9106 CS {0.3/19, 0.8/20, 0.7/21}
9107 CS {0.6/30, 0.9/31, 0.7/32}
9108 CS {0.5/32, 0.8/33, 0.6/34}
9711 EE {0.8/32, 0.7/33, 0.7/34}

Difference: Let r and s be the same as the above. Their difference is
defined as follows.

F—s={|(Vv(vesnternSE(,VV<B)Vv((@uw@v(ueray
€ SASEa(u, V) Z B At=u—v)}

The fuzzy difference is also an a-p-difference. The difference of the
fuzzy relations in Table 7-3 and Table 7-4 is shown in Table 7-6.

Table 7-6. The Difference Operation » — s

ID Dept Age
9106 CS {0.3/19}
9107 CS {0.6/30, 0.9/31, 0.7/32}
9711 EE {0.1/33}

Cartesian Product: The Cartesian product of fuzzy relations is the same
as one under classical relational databases. Let » and s be two fuzzy relations
on schema R and S, respectively. Then

114 Chapter 7

Fxs={RUS) | NV vWueravesant|Rl=ul[RIAt][S]=v
[SD}

Selection: Let » (R) be a fuzzy relation and P be a predicate denoted
selection condition. In classical relational databases, a predicate is formed
through combining the basic clause X 0 Y as operands with operators —, A,
and v, where 8 € {>, <, = #, >, <}, and X and Y may be constants,
attributes, or expressions which are formed through combining constants,
attributes or expressions with arithmetic operations. Under a fuzzy relational
database environment, the predicate P may be fuzzy, denoted P, to
implement fuzzy query for fuzzy databases. In P, the constants and
attributes may be fuzzy, so the expressions may also be fuzzy. The
evaluation of a fuzzy expression can be conducted by using Zadeh’s
extension principle. Based on the same consideration, the “6” should be
fuzzy comparison operations >y, <p, >p, =< p, &, and &g, in P, where B is a
threshold. Let 5 and ntg be two fuzzy data over U = {ul, u2, ..., un} and o
be the threshold of the resemblance relation on U. Then

(a) ma =~ mg if SE, (ma, 75) = B,

(b) A 75’3 g if SEa (7L'A, TCB) < ﬁ,

(c) ma >p g if ma A T and max (supp (1)) > max (supp (ng)),

(d) Ta > p B ifTL'A ~pg Tig Of Ttp > p T,

(e) ma <pmp if ma A5 g and max (supp (74)) < max (supp (ng)), and

(f) A XpTB ifTEA/SgT[B Or Ts =g TR
Then the selection on r for Pyis defined as follows.

op(r)={dt € r A Pr (1)}

A fuzzy relation » is shown in Table 7-7. Now let us retrieve such
information that the age is about 25-26 and the department is IS, where fuzzy
condition “about 25-26” is represented by the possibility distribution
{1.0/25, 0.9/26, 0.3/27}.

Then

SE o (t4 (Age), {1.0/25,0.9/26, 0.3/27}) = min (0.82, 0.86)=0.82> f, so

t (Age) =5 {1.0/25, 0.9/26, 0.3/27}.

Table 7-7. Fuzzy Relation r

D Dept Age Degree Nationality Office
tl 9106 CS {0.5/18,0.9/19, 0.7/20} M. Phil USA Y1101
2 9107 CS {0.4/20, 0.8/21, 0.6/22} M. Phil Canada Y1101
3 9705 IS {0.2/24, 0.9/25, 1.0/26} M. Phil France B6280
4 9706 IS {0.1/28, 0.7/29, 0.6/30} Ph.D. Italy B6280

5 9707 IS {0.6/29, 0.7/30, 0.1/31} Ph.D. France B6280

7. The Fuzzy Relational Databases 115

It is easy to see that tuple £3 satisfies the selection condition. The other tuples
in ¥ do not satisfy the condition. The result relation of the selection is shown
in Table 7-8.

Table 7-8. Selection Operation Gpep - '15" & Age = (1,025 092603271 (1)

ID Dept Age Degree Nationality Office

9705 IS {0.2/24, 0.9/25, 1.0/26} M. Phil France B6280

Projection: Let ¥ (R) be a fuzzy relation and attribute subset S — R. The
projection of 7 on S is defined as follows.

s () = {OI(Yw) (wer(R)nt=ulR]D}

Considering redundancy removal in a result relation, fuzzy projection is a
a-B-projection. The projection of a fuzzy relation in Table 7-7 is shown in
Table 7-9. Here, there are no data redundancies after projecting tuples 1, 12,
and #3 and the first three tuples in Table 7-9. But there exists data
redundancy after projecting tuples #4 and ¢5. The result of removing
redundancy forms that last tuple in Table 7-9.

Table 7-9. Projection Operation ITipey age; ()

Dept Age

Cs {0.5/18, 0.9/19, 0.7/20}
CS {0.4/20, 0.8/21, 0.6/22}

IS {0.2/24, 0.9/25, 1.0/26}

IS {0.1/28, 0.7/29, 0.7/30, 0.1/31}

The five operations above are called primitive operations in relational
databases. There are three additional operation intersection, join, and
division, which can be defined by the primitive operations.

Intersection: Let r and s be two union-compatible fuzzy relations. Then
fuzzy intersection of these two relations can be defined in terms of fuzzy
difference operation as:

rovs=r—(r—s).
Join: Let » (R) and s (S) be any two fuzzy relations. Pf is a conditional
predicate in the form of 4 0 B, where 0 € {>p, <p, =5, <p, =p, #p}, 4 € R,

and B € S. Then fuzzy join of these two relations can be defined in terms of
fuzzy selection operation as:

r MXprs = GR/'(I" X S).

116 Chapter 7

When attributes 4 and B are identical and “0” takes =, the fuzzy join
becomes the fuzzy natural join, denoted » < s. Being the special case of
fuzzy join, fuzzy natural join can be evaluated with the definition above. In
the following, the definition of fuzzy natural join is given directly. Let O =R
N S. Then

rs={{(R-Q)US)|Buy@v)(ueravesaSE,u[0]vI[O])
-[Z‘Q[i)/}\’[R‘Q]=u[R—Q]/\I[S_Q]:V[S‘Q]/\t[Q]:u[Q]me

The natural join of the fuzzy relations in Table 7-10 and in Table 7-11 is
shown in Table 7-12. Here, there is a resemblance relation Res on Age
shown in Figure 7-4 on the attribute Age. In fuzzy relation » and s, only #2
[Age] ~ v2 [Age] and u4 [Age] ~ v4 [Age] hold.

Table 7-10. Fuzzy Relation r

ID Dept Age

ul 9106 CS {0.3/19, 0.8/20, 0.7/21}
u2 9107 EE {0.8/21, 0.7/22}
u3 9711 IS {0.6/27, 0.9/28, 0.7/29}
ud 9712 EE {0.8/32, 0.9/33, 0.6/34}

Table 7-11. Fuzzy Relation s

First Name Age Degree Nationality Office
vl Mary {0.9/19, 0.7/20, 0.2/21} M. Phil USA Y1101
v2 Tom {1.0/21, 0.7/22} Ph.D. Canada Y1101
v3 John {0.6/24, 1.0/25, 0.7/26} M. Phil France B6280
v4 Jack {0.7/32, 1.0/33, 0.7/34} Ph.D. Italy B6280
Table 7-12. Natural Join Operation » >4 s

ID First Name Dept Age Degree Nationality Olffice

9107 Tom EE {0.8/21, 0.7/22} Ph.D. Canada Y1101
9712 Jack. EE {0.7/32, 0.9/33,0.6/34} Ph.D. Italy B6280

Division: Division, referred to quotient operation sometimes, is used to
find out the sub-relation » + s of a relation », containing sub-tuples of r
which have for complements in » all the tuples of a relation s. In classical
relational databases, the division operation is defined by

rrs={|(Vu)y(uesn(,u)eryi,
where u is a tuple of s and # is a sub-tuple of » such that (¢, u) is a tuple of r.

Let » (R) and s (S) be two fuzzy relations, where S R. Let Q= R — S. Then
the fuzzy division of » and s can be defined as:

7. The Fuzzy Relational Databases 117

res=Tqo (")~ To (- (Q) x s — 7).

The rename and outerunion are the other relational operations in addition
to the eight operation defined above. Their definitions are given as follows.

Rename: This operation is used to change the names of some attributes of
a relation. Let » (R) be a fuzzy relation, and let 4 and B be two attributes
satisfying 4 € R and B ¢ R, where 4 and B have the same domain. Let § =
(R - {4}) U {B}. Then r with 4 renamed to B is defined as

Paes M) ={S] (V) (v e rnt[S-B]=y[R-A]nt[B]=y[4]D}.

Outerunion: The common union operation requires two source relations
be union-compatible. In order to integrate heterogeneous multiple relations,
outerunion operation has widely been used in relational databases. Here, the
definition of fuzzy outerunion operation is given so that heterogeneous fuzzy
data resources can be integrated.

Let r (K, 4, X) and s (K, A4,) be two fuzzy relations, where X is primary
key. The outerunion of 7 and s, denoted by » U s, is defined as

rUs={t[KAXY]|@u)@v)(uerrvesnt[Kl=ul[K]=v[K] A
VS ednt[SI=ulSTuy [SDArX]=u[XIAt[Y)=vI[I])V
@y (VvuernvesantKl=ulKInt[Al=uld]rnt[X]=u
XintYl=oAv K]zt [KDVv((@vVu)(vesnuerant[K]=v
[KInt[A]=v[A] ~nt[X]=v [Y]IAt[X] =@ AulK]=1[K])}.

It can be seen from the definition above that fuzzy values are not
permitted to appear in primary key in fuzzy outerunion. The outerunion of
fuzzy relations in Table 7-13 and Table 7-14 is shown in Table 7-15

Table 7-13. Fuzzy Relation r

D Office Age
9106 Y1415 {0.3/19, 0.8/20, 0.7/21}
9107 B6280 {0.6/30, 0.9/31, 0.7/32}

Table 7-14. Fuzzy Relation s

D Degree Age
9106 {0.7/BE, 0.5/MPh} {0.3/19, 0.8/20, 0.7/21}
9108 {0.6/M.Ph, 0.8/Ph.D} {0.6/30, 0.9/31, 0.7/32}

Table 7-15. Outerunion Operation » U s

D Office Age Degree
9106 Y1415 {0.3/19, 0.8/20, 0.7/21} {0.7/BE, 0.5/MPh}
9107 B6280 {0.6/30,0.9/31, 0.7/32} 0]

9108 [0) {0.6/30, 0.9/31, 0.7/32} {0.6/M.Ph, 0.8/Ph.D}

118 Chapter 7

7.5.2 Properties of Fuzzy Relational Algebra

Being similar to the conventional relational databases, the proposed fuzzy
relational algebra is sound. In other words, it is closed. It means that the
results of all operations are valid relations. In detail, the result relations
produced by fuzzy relational operations satisfy the following three criteria:

(a) the attribute values must come from an appropriate attribute domain,

(b) there are no duplicate tuples in a relation, and

(c) the relation must be a finite set of tuples.

Projection, division, and selection take out a part from the source relation in
either column direction or row direction. Because the attribute values in
source relation must belong to the appropriate attribute domain, the attribute
values in these three result relations must come from the appropriate
attribute domain. Union, difference, and intersection operations are
conducted under union-compatible condition, which satisfies the first
criterion. In join and Cartesian product, the attribute values in result relations
come from two source relations, respectively, and they must be within the
appropriate attribute domains. It is clear that rename operation satisfies the
first criterion. As to outerunion operation, it is similar to natural join and
thus the first criterion can also be satisfied.

For selection and rename, if there are no redundant tuples in ordinary
relation, there are no redundant tuples in the result relations. There exist no
redundant tuples in the result relations of union, difference, intersection,
join, Cartesian product, division, projection, and outerunion. This can be
ensured by the definitions of those operations because the removal of
redundancies has been considered. Therefore, the second criterion is
satisfied.

Now let us look at the satisfactory situation of the third criterion. Let »
and s be two fuzzy relations, and let |#| and |s| denote the numbers of tuples
in » and s, respectively. It is easy to see that 0 < |op (#)] <|r| for fuzzy
selection. This implies that when no any tuple in 7 satisfies the selection
condition, the tuple number in the result relation is 0, and that when all
tuples in » satisfy the selection condition, one obtains |op (#)| = {t|. When
part of the tuples in 7 satisfy the selection condition, |os (#)| must be greater
than 0 and less than |#|. For projection Ilg (#), if all tuples in » are redundant
after projecting, then [[Is (r)] = 1; if there is not any redundancy in r after
projecting, then |IIs (7)] = |7|. In the other situations, [IIs (#)| must be greater
than 1 and less than |, i.e., 1 < |[II5 (#)| < |#|. Additionally, |» U s| must not
be greater than |7| + [s], [— s|, |» M s] and |r + 5| must not be greater than |7|,
and [r Dpss | and |r x s| must not be greater than |#| x |s|. In addition, |ps s

7. The Fuzzy Relational Databases 119

(M| = || and |r U s| <|r| + |s|. Since the number of tuples in the result relation
is closely related with the source relations and the source relations are finite,
the result relations must be finite.

In addition, fuzzy set operations in relational algebra have the same
properties as those of classical set operations. Let 7, s, and u be three union-
compatible fuzzy relations. Then

(@ rus=surandrns=snNr, (commutativity)
yrur=randrnr=r, (idempotence)
@ rn@Gus)=randru@EFns)=r, (absorption)
(d) Fusyvu=rusuuwand(rns)Nnu=rn(sNu),
(associativity)
@ rnsuwy=Fnsyvulirns)andrusNnuy=Fus)NFruUs),
and (distributivity)

® rus=ru(s—-ryandrns=r—(r—s).

The following properties are also held in fuzzy operations in relational
algebra. Let r and s be two fuzzy relations on schema R and u be a fuzzy
relation on schema Q. Let P, be a selection predicate involving attributes of
R. Then

@u@us)=xryu@Xs)andudbd (Fr—s)=w@>Xr)—(u

5)s

(b) opr(r U s) = opr(r) U opr(s) and ops (¥ — 5) = opp () — opr (), and

(c) opr(u D7) = u Dops(r).

These properties can be proven by the definitions of fuzzy operations in
relational algebra.

7.6 Flexible Query with SQL

Query processing in relational databases refers to such procedure that the
tuples satisfying a given selection condition is selected and then they are
delivered to the user according to the required formats. These format
requirements include which attributes appear in the result relation and if the
result relation is grouped and ordered over the given attribute(s). So a query
can be seen as comprising two components, namely, a Boolean selection
condition and some format requirements. For the sake of the simple
illustration, some format requirements are ignored in the following
discussion. Then, utilizing a well-known relational query language, i.e., SQL
(Structured Query Language), a basic query is represented as

SELECT <attribute list> FROM <relation name> WHERE <selection
condition>,

120 Chapter 7

where <attribute list> is the list of attributes separated by commas:
Attribute;, Attribute,, ..., Attribute,. At least one attribute name must be
specified in <artribute list>. Attributes that take place in <attribute list> are
selected from the associated relation which is specified in the FROM
statement. <relation name> is specified with FROM, which specifies the
relation name from which the attributes are selected with the SELECT
statement.

Classical relational databases suffer from a lack of flexibility to query.
The given selection condition and the contents of the relation are all crisp. In
this context, a tuple will either definitely or definitely not satisfy the
condition. In incomplete relational databases, however, a tuple may satisfy
with a certain possibility and a certain necessity degree the selection
condition even if the condition is crisp due to the fact that tuples are
incomplete. On the other hand, imprecise information may exist in the
selection condition and the situation that a tuple may more or less satisfy the
selection condition may also occur. For classical relational databases,
however, the query with imprecise selection condition is also useful in order
to satisfy the requirement of decision making. The classical query processing
is obviously too rigid for two cases. A query is flexible if the following
conditions can be satisfied (Bosc and Pivert, 1992; Bosc and Pivert, 1995).

(a) A qualitative distinction between the selected tuples is allowed.

(b) Imprecise conditions inside queries are introduced when the user
cannot define his/her needs in a definite way, or when a prespecified
number of responses are desired and therefore a margin is allowed to
interpret the query.

Typically, the case in (a) occurs when the queried relational databases
contain incomplete information and the query conditions are crisp. In a
relation of product design, for example, it is supposed that there are four
products 4, B, C and D which lengths are respectively interval values [5, 8],
[7,9], 10, 14] and [11, 14]. Now let us query this relation with the condition
"length = 8". Then A and B may satisfy the condition whereas C and D must
not satisfy the condition. The case (b) typically occurs when the query
conditions are imprecise even if the queried relational databases do not
contain incomplete information. For example, there are four products E, F, G
and H which lengths are respectively crisp values 8, 9, 12 and 14. Now let us
query this relation with the condition "length is between 10 and 15". Then G
and H should satisfy the condition whereas £ and F must not satisfy the
condition. It can be seen that flexible queries permit users to provide
incomplete query conditions and the query results include the tuples
satisfying the conditions definitely as well as the tuples satisfying the
conditions indefinitely.

7. The Fuzzy Relational Databases 121

For fuzzy relational databases, just like the definition of fuzzy selection
operation given above, a basic query condition with form of X 6 Y may
consist of fuzzy comparison operations >, <p, =p, <p, ~p, and &g for “0”
and fuzzy constants for “Y”, where B is a threshold. Then under a given
threshold, a tuple either satisfies the condition if the condition is true or does
not satisfy the condition if the condition is false. Since the basic conditions
are only evaluated true or false, complex query conditions comprised of
basic conditions and logical operations can be evaluated true or false by
means of 2VL. So based on the given threshold, all tuples in fuzzy relation
are divided into two parts for a query, namely, answer part and no answer
part. Compared with the queries for relational databases containing partial
values and null values (Lipski, 1979), the query answers for fuzzy relational
databases are only sure answers. There are no possible answers to be
included. The reason that this situation occurs is because of the usage of
threshold. The basic conditions with which evaluations of semantic
relationship are less than the threshold are regarded false. Therefore,
depending on the different thresholds that are values in [0,1], the same query
for the same fuzzy relation may have different query answers. The queries
for fuzzy relational databases are concerned with the number choices of
threshold. Therefore, the following syntax of SQL is used to represent the
select sentence:

SELECT <attribute list> FROM <relation name> WHERE <selection
condition> [WITH POSSIBILITY <threshold>],

where <attribute list> and <relation name> are the same as the SQL in
classical relational, <selection condition> is a fuzzy select condition, and
<threshold> is a crisp threshold in [0, 1]. Utilizing such SQL, one can get
such tuples that satisfy the given select condition and the given threshold.
Note that the item WITH POSSIBILITY <threshold> can be omitted. The
default of <threshold> is exactly 1 at this moment.

Here, a problem exists in fuzzy queries, i.e., the strength of query
answers to the queries is not known. Such information is useful sometimes.
Let us look at an example in Table 7-16.

Table 7-16. Fuzzy Relation

Sensor Name Temperature
A {0.2/254, 0.7/256, 0.9/258, 0.6/260}
B {0.8/256, 0.9/258, 0.6/260, 0.3/262}

One makes a query:
SELECT Sensor Name FROM r WHERE Temperature ~ {0.7/256,
0.9/258, 0.6/260, 0.3/262} WITH POSSIBILITY 0.85.

122 Chapter 7

Then
SE ({0.2/254, 0.7/256, 0.9/258, 0.6/260}, {0.7/256, 0.9/258, 0.6/260,
0.3/262})=0.88 > 0.85
SE ({0.8/256, 0.9/258, 0.6/260, 0.3/262}, {0.7/256, 0.9/258, 0.6/260,
0.3/262})=10.96 > 0.85
So sensors 4 and B all satisfy the condition and become the query answers. It
is clear that sensor B more satisfies the condition than sensor 4. However, in
query answers, they cannot be identified with respect to the satisfaction
degrees.

In order to estimate the strength of query answers to the queries, such
restriction is relaxed that the basic query conditions are only evaluated true
or false according to the threshold. Here a multivalued logic (MVL) system
is introduced, in which each logical value is a number in [0, 1]. Based on the
MVL, two basic query conditions X =Y and X > Y are defined as follows.

(a) X =Y is evaluated to be a logical value p (X =Y)=SE (X, Y);

(b) X>Y is evaluated to be a logical value u (X > Y), where

_ J0:if min (supp (X)) < min (supp (Y)) and max (supp (X)) < max (supp (Y))
HED =0 _SE (X, ¥) otherwise

The logical operations AND, OR, and NOT under MVL are defined as min
(), max () and complementation, respectively. Let pl and p2 be logical
values under MVL, It is clear that 1 and p2 are all in [0, 1]. Then

(a) pul AND p2 =min (1, p2),

(b) pl OR p2 =max (1, p2), and

(c) NOTpl =1-pl.
For a query with complex query condition, the logical value that each tuple
in the fuzzy relation satisfies the condition can be evaluated according to the
comparison operations and logical operations under MVL. This logical value
can be seen as the strength that the tuple matches the condition. In general,
the tuples whose strength is zero are ignored. Only the tuples whose
strengths are larger than zero are permitted in query answers and these tuples
can be ranked by the descent of the strengths. When a threshold is given, the
tuples that strengths are less than the threshold can be cut. Since the tuples in
query answers are connected with the strengths matching the query, one can
choose the tuple with the maximum strength from the query answers. After
introducing MVL, the query answers can be measured through the matching
strengths.

In the example in Table 7-16, the matching strengths of sensors A and B
to the given condition are 0.88 and 0.96, respectively. Such results
demonstrate that sensor B more satisfies the condition than sensor A.

7. The Fuzzy Relational Databases 123

7.7 Updating Fuzzy Relational Databases

One of the major tasks of database management systems (DBMS) is to
update databases. Three kinds of update operations can be identified in
relational databases, which are Insertion, Deletion, and Modification.
Insertion operation is to insert a valid tuple into a given relation and deletion
operation is to remove the tuples that satisfy the given condition(s) from a
given relation. As to modification operation, the tuples that satisfy the given
condition(s) are modified to meet another given condition(s). So
modification operation can be viewed as a synthesis of deletion operation
and insertion operation, where we first remove the tuples that satisfy the
given condition(s) from the given relation, then modify these removed tuples
to meet another given condition(s), and finally the modified tuples are
inserted into the original relation.

Fuzzy relational databases have extensively investigated for last two
decades. However, less research has been done in updating fuzzy relational
databases. It is hard to update fuzzy relational databases because of
information fuzziness. In this section, we discuss these three update
operations for fuzzy relational databases. We investigate the update
strategies and develop the algorithm to implement the update of fuzzy
relational databases.

7.7.1 Insertion Operation

Only valid tuples can be inserted into a fuzzy relation. So when a tuple is
to be inserted in to a given fuzzy relation, it must be validated before
conducting insertion operation. A valid inserting tuple means that it must
satisfy the followings:

(a) its key value(s) must be crisp,

(b) it is not redundant with any tuple in the given fuzzy relation, and

(c) it must satisfy the data integrity constraints of the given fuzzy

relation.
The key of tuples is used to identify tuples uniquely. If the inserting tuple
has fuzzy key value, the insertion operation is rejected. The tuple whose key
value is crisp is sound. Of course, the insertion operation is rejected if the
inserting tuple is redundant with a tuple in the given fuzzy relation.

Now let us focus on the situation that the inserting tuple does not satisfy
the data integrity constraints of the given fuzzy relation. In the classical
relational databases, data integrity constraints (functional and multivalued
dependencies) are “hard”. But the functional and multivalued dependencies
in the fuzzy relational databases are a kind of “soft” constraints. Here the
“soft” constraints do not mean that they can be broken by the inserting tuple

124 Chapter 7

but mean that it is possible to make the inserting tuple satisfy the fuzzy
functional and/or multivalued dependencies when it does not satisfy such
constraints. The reason that we can do that is because of information
imperfection of attribute values.

In (Chang and Chen, 1998; Liao, Wang and Liu, 1999; Ma, Zhang and
Mili, 2002), the fuzzy functional and/or multivalued dependencies of fuzzy
relational databases have been used to compress (refine) fuzzy data. The idea
behind these methods is that the data dependencies do not hold because
some attribute values are inconsistent, but we can eliminate the
inconsistency. For example, let ¢ and s be two tuples in a classical relation #
(R) and FD: X — Y, where R denotes the schema, its attribute set is denoted
by U, and X, ¥ < U (here we assume that X and Y are all single attributes).
We say ¢ [Y] and s [¥] are inconsistent if ¢ [X] =s [X] and ¢ [Y] # s [Y]. To
eliminate the inconsistency, # [¥] and s [Y] are modified into 7 [Y] =s [Y] or ¢
[X] and s [X] are modified into t [X] # s [X]. In the fuzzy relational
databases, the attribute values may be fuzzy data. So there are more spaces
to make inconsistent attribute values consistent. Unnecessary elements in
fuzzy data can be eliminated and a fuzzy value can be compressed into more
informative one. Similarly, we can use the method of compressing fuzzy
data by fuzzy data integrity constraints for our purpose. As a result, some
fuzzy attribute values either in the inserting tuple or in the tuples of the
relation are compressed according to the fuzzy data integrity so that the
inserting tuple can satisfy the fuzzy data integrity constraints of the given
fuzzy relation, if it does not.

In the following, we give an example to show how we can compress
fuzzy data so that the inserting tuple satisfies the data dependencies. Let r (X,
Y, Z) be a fuzzy relation and FFD: Y — Z be a fuzzy functional dependency
in 7. Here X is the key of 7. Assume that r only contains a tuple s = (1001,
{0.7/a, 0.4/b, 0.5/d}, {0.9/f, 0.6/g, 1.0/h}) and there are two resemblance
relations on X and Y shown in Figure 7-2 and Figure 7-3, respectively. Let
two thresholds on the two resemblance relations be o; = 0.90 and o, = 0.95,
respectively.

Now we would like to insert tuple ¢z = (1002, {0.5/a, 0.4/¢c, 0.8/d}, {0.6/g,
0.9/h, 0.9/i, 0.6/j}) into ». We have
SE (¢ [Y], s [Y]) = min (SID (¢ [Y], s [Y]), SID (s [Y], £ [¥])) = min (0.875,
0.824)=10.824
and

SE (¢ [Z], s [Z])) = min (SID (7 [Z], s [Z]), SID (s [Z], ¢ [Z])) = min (0.8,

0.96)=0.8.
It is clear that SE (¢ [Y], s [Y]) < SE (¢ [Z], s [Z]) is not true. At this point,
inserting ¢ into 7 directly is not allowed because FFD: ¥ — Z will not hold in
r. But we can make ¢ [Z] and s [Z] closer in semantics so that SE (¢ [Z], s [Z])

7. The Fuzzy Relational Databases 125

> SE (¢ [Y], s [Y]). For this purpose, we should reduce the possibility of
element j in 7 [Z] from 0.6 to x. According to SE (¢ [Z], s [Z]) = 0.824, we get
a unique x = 0.513. Then instead of tuple ¢, tuple (1002, {0.5/a, 0.4/c, 0.8/d},
{0.6/g, 0.9/h, 0.9/i, 0.513/j}) can make FFD: Y — Z hold in » and hereby can
be inserted into 7. It should be noticed that when we compress ¢ [Z] and s [Z],
we have the following principles:

(a) We should try to reduce the possibilities of such elements in 7 [Z] and
s [Z] that are not common with other elements. First we can select
any one from these elements to reduce its possibility. If its possibility
is reduced down to less than 0, the element must be eliminated from
the corresponding fuzzy data and then we have to select another one
from these elements to repeat the processing above. If the last
element is processed and its possibility is still reduced down to less
than 0, the element must be eliminated from the corresponding fuzzy
data and we have to have the following processing in (b).

(b) We should try to increase the possibilities of such elements in ¢ [Z]
and s [Z] that are common each other but their possibilities are
different. First, for any pair of common elements, we select the
element which possibility is less than the possibility of another
element to increase its possibility. If its possibility is increased up to
greater than the possibility of another element in the pair, the
possibility of this element is only the possibility of another element
in the corresponding fuzzy data and we have to select another pair of
common elements to repeat the processing above. If the last pair of
common element is processed and the possibility is still increased up
to the possibility of another element in the pair, the possibility of this
element is the possibility of another element in the corresponding
fuzzy data and we have to compress 7 [Y] and s [7].

Generally speaking, we can only compress ¢ [Y] and s [Y] rather than 7 [Z]
and s [Z] if SE (¢ [Z], s [Z])) =0 and SE (¢ [Y], s [YD < L; if 0 <SE (¢ [Z], s
[ZD))<1and SE (z[Y], s [Y]) = 1, we can only compress ¢ [Z] and s [Z] rather
than ¢ [Y] and s [Y]; If O < SE (¢ [Z], s [Z])) < SE (¢ [Y], s [Y]) < 1, we can
compress ¢ [Z] and s [Z], or ¢ [Y] and s [Y] to satisfy FFD: ¥ — Z. But it
should be noticed that when we compress ¢ [Y] and s [Y], the principles we
should follow are very different from that used in compressing ¢ [Z] and s
[Z]. At this moment, we try to make 7 [¥] and s [Y] farther in semantics so
that SE (¢ [Z], s [Z]) = SE (¢ [Y], s [Y]). So we have the following principles
when we compress ¢ [Y] and s [Y]:

(c) We should try to reduce the possibilities of such elements in ¢ [Y] and

s [Y] that are common each other. First, for any pair of common
elements, if their possibilities are different, we select the element
which possibility is less than the possibility of another element to

126 Chapter 7

reduce its possibility. But if their possibilities are identical, we
should reduce their possibilities simultaneously. If the possibility of
any element in the pair is reduced down to less than 0, the element
must be eliminated from the corresponding fuzzy data and then we
have to select another pair of common elements to repeat the
processing above. If the last pair of common element is processed
and the possibility of any element in the pair is reduced down to less
than 0, the element must be eliminated from the corresponding fuzzy
data and we have to have the following processing in (d).

(d) We should try to increase the possibilities of such elements in # [Y]
and s [Y] that are not common with other elements. First we can
select any one from these elements to increase its possibility. If its
possibility is increased up to greater than 1, the possibility of this
element is only 1 in the corresponding fuzzy data and we have to
select we have to select another one from these elements to repeat the
processing above. If the last element is processed and its possibility
is still increased up to greater than 1, it is indicated that 7 and s cannot
be compressed by FFD: Y — Z.

In the above, we discuss fuzzy data compression based on fuzzy
functional dependencies so that the inserting tuple can satisfy this integrity
constraint. Similarly we can do that by fuzzy multivalued dependencies. The
strategies and approaches for compressing fuzzy data by fuzzy data
dependencies have been developed in (Ma, Zhang and Mili, 2002), where
fuzzy data are represented by the interval number description rather than the
possibility distribution. So the fuzzy data compression here is completely
different from that of (Ma, Zhang and Mili, 2002) in the implementation but
they refer to the similar strategies. We do not give the detailed principles for
fuzzy data compression by fuzzy multivalued dependencies here.

If the inserting tuple, say ¢, still breaks the fuzzy data dependencies after
fuzzy data compression, we say ¢ can not be compressed against the fuzzy
relation and the insertion operation must be rejected. For this case, the fuzzy
relation must be recovered from the original state of no data compression.
Only when the inserting tuple can be compressed against the fuzzy relation,
the compression then takes effect.

The inserting tuple that satisfies the above-mentioned requirements, i.e.,
it is sound, no redundancy, and compressible, can be inserted into the given
fuzzy relation. It has been shown that the insertion operation in the fuzzy
relational databases is relevant to the issues of fuzzy data dependencies, and
fuzzy data redundancies. So we cannot simply use the union operation of the
fuzzy relational operations in Section 7.5 to carry out the insertion. We must
define the insertion operation in context of the fuzzy relational databases.

7. The Fuzzy Relational Databases 127

Based on the discussion above, the insertion operation must achieve the
following procedures.

(a) Validating the inserting tuple to see if it is sound;

(b) Determining if tuple redundancies exist;

(c) Validating the data integrity of the inserting tuple in the original

relation.
Figure 7-5 shows the relationships among these procedures. Let ¢ be the

tuple that is to be inserted into the given fuzzy relation r.

t is sound?

Yes

t is redundant with »?

t can be compressed?

\ 4

¢ cannot be inserted into »

Compress fuzzy data

r—_

Insert ¢ into »

ﬂ

Figure 7-5. Insertion Process in the Fuzzy Relational Databases

Based on the insertion strategies discussed above, the implementation
algorithm of the insertion operation is developed as follows.

Insertion (r, f)
Input: the inserting tuple {, the original fuzzy relation r, and a set of fuzzy data

dependencies FFD/FMVD;

128 Chapter 7

Output: the fuzzy relation r after insertion operation;
If s is not sound then return (r);
For any tuple s in r, repeat to do {
If (SED (s, f) > a given threshold) then return (r);
(/*tis redundant with s*/)
}
ri:=r, (M*backing up rto r*/)
For any data dependency, repeat to do
If (t does not make the data dependency holding in r) then
If (tis not compressible against r) then {

r=ri, (/*restoring r from r1*/)
Print (“Tuple t cannot be inserted into fuzzy relation r");
return (r);
}
Else {

If (t is compressible) then (t is replaced with a new tuple after t is
compressed);

If (any tuple in r, say s, is compressible) then (s is replaced with a new
tuple after s is compressed);

}

r=ru{ft;

7.7.2 Deletion Operation

The deletion operation is to choose and delete the tuples in the fuzzy
relational databases that satisfy some given conditions. Compared with the
insertion operation, this operation does not need to consider the data
dependencies and tuple redundancies because it is always assumed that there
are no redundant tuples and no tuple breaks the data dependencies in the
fuzzy relational databases. It is clear that such an assumption is reasonable
and necessary, which can be guaranteed through the strategies of Insertion
operation defined above.

Flexible query can be used to find out the tuples from the fuzzy relational
databases that satisfy the given deletion condition. Here the deletion
conditions act as the query conditions. Generally, users should provide the
condition that the deleted tuples should satisfy. Of course, the relation
deletion should be supported, which means that all tuples are deleted. When
the deletion condition is omitted, all tuples of the relation are deleted.

The implementation algorithm of the deletion operation is as follows.

Deletion (r, Py

Input: fuzzy relation r and a given deletion condition P

7. The Fuzzy Relational Databases 129

Output. the fuzzy relation r after deletion operation;
If Pr= @ then s = relse s := opr (1);
If s = @ then return (1);
r=r-s,
return (r);

7.7.3 Modification Operation

In the relational databases, modification operation means that some
attribute values of tuples are replaced with new attribute values. As a result,
the contents of these tuples in the relational databases change. In order to
perform such operations, users should provide two aspects of conditions: one
is the condition that the modifying tuples should satisfy; the other one is the
condition that the modified tuples should satisfy. The modification is done
through locating the tuples that satisfying the first condition, and then the
attribute values of these tuples are replaced with the corresponding attribute
values given in the second condition. It can be seen that the modification is
essentially performed through the deletion and the insertion jointly. Note that
the first condition can be omitted. It means that all tuples should be modified
according to the second condition. The second condition cannot be omitted.

Also it should be noticed that, however, the modification operation that
changes the contents of some tuple cannot be finished sometimes. If the
modification operation results in that the tuples break the data dependencies,
the modification operation does not succeed and is rejected. If we use the
deletion operation and the insertion operation to carry out the modification
operation, we have to recover the relational databases when the modification
operation cannot be finished.

The implementation algorithm of the modification operation is given as
follows.

Modification (r, P, Pr)

Input. fuzzy relation r, two given condition Pi and Pg;

Output: the fuzzy relation r after modification operation;

if Py = @ then s .= relse s := opsr (N);
If s = @ then return (r);
r:=r-s;
For each tuple t € s, repeat to do {
modifying £ to £ according to Piz;
If (f cannot be inserted into r) then Insert (r, f);

}

return (r);

130 Chapter 7
7.8 Integration of Multiple Fuzzy Relational Databases

Sharing and exchanging information across multiple databases in
different sites have become an essential requirement in distributed
application environments such as the development of global/cooperative
information systems and data warehousing applications (Mena et al., 2000;
Wiederhold, 2000). It should be noticed that current research of database
integration mainly focus on integrating crisp component databases. On the
other hand, the fuzzy relational databases have extensively being
investigated for two decades under single database environment. While
multidatabase systems and fuzzy relational databases have received
increasing attentions and have respectively made significant progress, data
sharing among multidatabses and knowledge-based intelligent system
development put an essential requirement on integration of fuzzy
multidatabases (Zhang, Laun and Meng, 1997) accompanying the extensive
application of computer technologies in data and knowledge intensive areas
as well as the rapid advance in networking technologies. However, little has
been reported on integrating fuzzy component databases to develop fuzzy
multidatabase systems.

The only effort that we are aware of in the area of fuzzy relational
database integration in a multidatabase system is by Zhang, L.aun and Meng
(1997). In their work, several kinds of conflicts that may occur in fuzzy
multidatabases were identified, including missing membership degree
attribute, inconsistent (membership degree) attribute values, and attribute
domain inconsistency, and the resolutions were proposed in a procedural
manner. In particular, their paper focused on the conversion of fuzzy terms
and fuzzy-probabilistic relational models are resulted in for the integrated
target databases. It should be noted that missing attributes, attribute name
conflicts and entity identification were not proposed in (Zhang, Laun and
Meng, 1997). In addition, the fuzzy data in (Zhang, Laun and Meng, 1997) is
represented by the membership function whose curve is a trapezoidal shape.

7.8.1 Background

There are several approaches to implement schema integration of
heterogeneous multiple databases. The first approach is to merge individual
schemas of component databases into a single global conceptual schema for
all independent databases (Breitbart, Olson and Thompson, 1987; Deen,
Amin and Taylor, 1987; Motro, 1987). This approach requires that all local
schemas are mapped to the global schema. The second approach is to adopt a
so-called federated database system (Heimbigner and McLeod, 1985). Being
not the same as the first approach, there is not a global schema for all

7. The Fuzzy Relational Databases 131

component databases in a federated database system and only a schema
describing data that the application may access to is created in the local
databases, which is called “partial schema”. This approach only requires a
partial integration. Notice that the target databases based on global schema
and federal databases are physical databases. There are a solid mapping
among component databases and target databases. Because the small change
of component databases can cause the large change of target databases,
maintaining these mapping is difficult. Generally there are some restricts on
the component databases. The third approach is to dynamically create the
target databases by providing users a multiple-database query language
(Czejdo, Rusinkiewicz and Embley, 1987; Litwin et al., 1987 & 1990). The
global or partial schemas are not needed in this approach and the target
databases are essentially the databases based on the view. In other words,
they are logical databases or virtual databases. Being different from the view
in traditional relational databases, the view relation here should resolve the
possible conflicts. Because this approach has no restricts on component
databases, it is widely adopted to integrate heterogeneous multiple-database
systems.

In database integration, a core problem is to identify the same real-world
object from component databases and then resolve a large number of
incompatibilities that exist in different component databases (Kim et al.,
1995; Parent and Spaccapietra, 1998). It is a difficult and interesting issue to
identify if tuples from component databases describe the same real-world
object. If component relations have a common key, the component tuples
with the same key values must describe the same real-world object.
Otherwise, it is necessary to identify entity (object).

First, let’s focus on the component relations with common keys. Let »
and s be component relations from different component databases, and #, and
t; be their tuples, called component tuples, respectively. If ¢, and #, describe
the same real-world object, namely, they have the same attribute values on
the common key, then ¢, and ¢, can be integrated to produce a single tuple ¢,
called target tuple with outerjoin (Breitbart, Olson and Thompson, 1987;
Chen, 1990) or outerunion (Tseng, Chen and Yang, 1993) operation after
resolving the conflicts. According to the semantic relationship between ¢,
[Ai] and ¢, [Aj], four types of important conflicts are generalized as follows
(DeMichiel, 1989; Tseng, Chen and Yang, 1993).

(a) Naming conflicts. This type of conflict can be divided into two
aspects. One is that semantically related data items are named
differently, and the other is that semantically unrelated data items are
named equivalently.

(b) Data type conflicts. This occurs when semantically related data items
are represented in different data types.

132 Chapter 7

(¢} Data scaling conflicts. This occurs when semantically related data
items are represented in different databases using different units of
measure.

(d) Missing data. This occurs when the schemas of component databases
have different attribute sets.

The conflict of missing data can be resolved by using outerunion
operation and null values (Codd, 1986) in target tuples. For the other three
types of conflicts, the mappings of attribute values from the attributes of
component tuples to the virtual attributes (DeMichiel, 1989) of target tuples
are necessary. There are three types of mappings: one-to-one, many-to-one,
and one-to-many. The naming conflicts and data type conflicts can be
resolved with the one-to-one mapping. The data scaling conflicts can be
resolved with either many-to-one mapping or one-to-many mapping,
depending on particular application situations. For the mappings of the one-
to-one and many-to-one, the result is still an atomic value in a virtual
attribute of a target relation. For the mapping of one-to-many, however, the
result is that a special value of a virtual attribute, called the partial value, will
be produced (DeMichiel, 1989; Grant, 1979), in which exactly one of the
values is a true value.

Concerning incompatible keys in multidatabases, typically, we have the
following situations:

Case I: the two tables might use different identifiers to identify the same

real world entity, and

Case 2: the tables might use the same identifier to identify different real

world entity.
Case 1 is called entity heterogeneity in (Dey, Sarkar and De, 1998). In fact,
two kinds of cases concern entity identification, or entity matching (Ahmed
et al., 1991; Chatterjee and Segev, 1991; Chatterjee and Segev, 1995; Chen,
Tsai and Koh, 1996; Dey, Sarkar and De, 1998; Lim et al., 1996; Pu, 1991;
Wang and Zhang, 1996).

There are the following approaches to entity identification. The first one
is to require the user to specify equivalence between tuples, i.e., the
responsibility to matching the entities is assigned to the user (Ahmed et al.,
1991). The second one is to match entities using a portation of the key values
in the restricted domain (Pu, 1991), which results in probabilistic key
equivalence. The third one is to use all common attributes (including key
attributes) to help determine equivalent entities (Chatterjee and Segev, 1991;
Chen, Tsai and Koh, 1996; Dey, Sarkar and De, 1998). The last one is to use
knowledge (rules) or integrity constraints to identify equivalent entities
(Chatterjee and Segev, 1995; Wang and Zhang, 1996) on the basis of the
third approach. For the second and third approaches, since it is not
completely determined if two tuples from different relations refer to the

7. The Fuzzy Relational Databases 133

same real world entity, a probabilistic data model is presented to estimate the
accuracy of the comparison. It can be seen that necessary semantic
information and domain knowledge are required and are assumed available
for the identification in the first, second and last approaches. However, they
may not be easy to acquire all time (Chen, Tsai and Koh, 1996). So in the
following, we use the third approach for the entity identification in fuzzy
multidatabases.

Here fuzzy multidatabases refer to the integration of more than two fuzzy
relational databases. These fuzzy relational databases may be created and
maintained by different individuals and are probably based on different
fuzzy relational models presented in Section 7.2. In the following, we only
focus on the fuzzy relational model where non-key attribute values may take
possibility distributions and tuples may or may not be associated with
membership degrees.

7.8.2 Contflicts and Resolutions in Fuzzy Multidatabases with
Compatible Keys

In this section, we identify the conflicts in integrating multiple fuzzy
relational databases and develop the resolutions. Here the fuzzy relational
databases are with compatible keys.

Conflict Identifications

Since fuzzy relational databases exist in multiple relational databases and
crisp relational databases are essentially the special forms of fuzzy relational
databases, there are new types of conflicts, which should be resolved in
schema integration together with the conflicts identified above. In this
section, we identify various conflicts that may occur in the schema of fuzzy
multidatabase systems.

Let » and s be two fuzzy component relations with common key from
different component databases and ¢, and ¢, be their tuples, called component
tuples, respectively. Assume there is no any fuzzy value for the key and the
key values of #, and £, are identical.

Membership Degree Conflicts

Membership degree conflicts occur at the level of tuples, which can be
classified into two classes as follows:

(a) Missing membership degree. Among t, and 1,, one is associated with

a membership degree attribute, i.e., the tuple is fuzzy, but another is
not, i.e., the tuple is crisp.

(b) Inconsistent membership degree. Although ¢, and f; have degree

memberships ¢, [pD] and ¢ [pD], respectively, ¢, [pD] # ¢, [pD].

134 Chapter 7

Example: Consider three fuzzy relations r,, ; and 73 in Figure 7-6, which
have common key ID.

Fuzzy relation 7y Fuzzy relation r, Fuzzy relation ry
D Name D Name pD ID Name pD
9540 John 9540 John 0.8 9540 John 0.5

Figure 7-6. Fuzzy Relations with Membership Degree Conflicts

It can be seen that tuple <9540, John> in 7, denoted ¢,;, tuple <9540, John,
0.8> in ry, denoted t,,, and <9540, John, 0.5> in r3;, denoted .5, have the
same key value. That means that they denote the same real-world entity. But
there is not membership degree attribute in 7;. So compared with 7, and ¢,
the conflict of missing membership degree occurs in 7,;. Besides, ¢, [pD] and
t,; [pD] are different although r, and 7; all have membership degree attribute
pD. The conflict of inconsistent membership degree occurs in #,; and ¢,3.
Attribute Value Conflicts in Identical Attribute Domains
In addition to the conflicts at the level of tuples, there may exist conflicts
at levels of attribute domains and attribute values. First, let us focus on
attribute value conflicts, where the attributes with conflicts have the same
domains.
Let A, and A, be attributes with the same domains in » and s,
respectively, and 7, [A,] and ¢, [A,] are semantically related to each other.
(a) Inconsistent crisp attribute values. 1, [A,] and 1, [A,] are all crisp but
L [A] =t AL
(b) Missing fuzzy attribute values. Among ¢, [A,] and ¢, [A,], one is fuzzy
whereas another is crisp.
(c) Inconsistent fuzzy attribute values. t, [A,] and ¢, [A,] are all fuzzy but
L [A] =t [Ad.
Example: Consider two fuzzy relations r and s in Figure 7-7, which have
common key Name.

Fuzzy relation » Fuzzy relation s
Name Age Name Age
Tom 25 Tom 27
John 24 John about 25
Mary about 21 Mary about 23

Figure 7-7. Fuzzy Relations with Attribute Value Conflicts in Identical Attribute Domains

Tuple <Tom, 25> in and tuple <Tom, 27> in s have the same key value and
they hereby denote the same real-world entity. But their values on attribute
Age are crisp values 25 and 27, respectively. The conflict of inconsistent

7. The Fuzzy Relational Databases 135

crisp attribute values occurs in attribute 4ge of these two tuples. Similarly,
tuple <John, 24> in r and tuple <John, about 25> denote the same real-world
entity. But their values on attribute Age are crisp value 24 and fuzzy value
about 25, respectively. The conflict of missing fuzzy attribute values occurs
in attribute Age of these two tuples. Again, tuple <Mary, about 21> in r and
tuple <Mary, about 23> denote the same real-world entity. But their values
on attribute Age are fuzzy values about 21 and about 23, respectively. The
conflict of inconsistent fuzzy attribute values occurs in attribute Age of these
two tuples.

Missing Attributes

Missing attributes mean that » and s have different attribute sets. In other
words, an attribute in a component relation is not semantically related to any
attribute in another component relation.

Example: Consider two relations » and s, which are on schema {ID,
Name, Age} and on schema {ID, Name, Major}, respectively. It is clear that
there is no any attribute in s that is semantically related to attribute Age in 7.
Also there is no any attribute in » that is semantically related to attribute
Major in s. Therefore, attribute Age in » is a missing attribute of relation s
and attribute Major in s is a missing attribute of relation r.

Attribute Name Conflicts

Attribute name conflicts are the naming conflicts. Let A, and A, be
attributes in » and s, respectively. This type of conflict can be divided into
two aspects:

(a) Semantically related attributes are named differently, i.e., synonyms.

(b) Semantically unrelated data items are named equivalently, i.e.,

homonyms.
It should be noticed that the conflicts of missing attributes and attribute
names are not concerned with if component relations are fuzzy.

Example: Consider two relations » and s, which are on schema {ID, Last
Name, Position} and on schema {ID, Family Name, Position}, respectively.
Here attribute Last Name in r and attribute Family Name in s are named
differently. But they are semantically related to each other. That means that
they indicate the same things. Concerning attribute Position, it means
academic position in r, professor, associate professor, etc. But in s, it means
office location. So attribute Position in r and attribute Position in s are
named equivalently but they are semantically unrelated to each other. In
other words, they indicate different things.

Attribute Domain Conflicts

Data type conflict and data scaling conflict mentioned above are caused
by inconsistent attribute domains. When there are fuzzy attribute values in
component tuples, the attribute domain conflicts become more complicated.

136 Chapter 7

It is noticed that there is no attribute domain conflict in membership degree
attributes.

Let A, and A, be attributes with different domains in » and s,
respectively. Assume that #, [A,] and ¢ [A,] are semantically related to each
other.

(a) Data format conflicts. Although A, and A, have the same data type

and data unit, they have different expressive formats.

For example, ¢, [A,] and ¢ [A,] are all date data, but ¢ [A,] is
22/05/98 with format “dd/mm/yy” while t; [A,] is 05/22/98 with
format “mm/dd/yy”.

(b) Data unit conflicts. Attributes A, and A, have the same data type, but

their measure units are different.
For example, ¢, [A,] and ¢, [A,] are all real, but ¢, [A,] is 22.4 with
unit “kilogram” while t; [A,] is “22.9 with unit “pound’.

(c) Data type conflicts. Attributes A, and A, have different data type.

For example, ¢, [A,] is integer 22 and £, [A,] is real 21.9.

Since attribute domains have the above-mentioned conflicts, attribute
values must have conflicts. Considering fuzziness of attribute values, we
differentiate the following cases.

Case 1: 1. [A,] and ¢ [A,] are all crisp.

Case 2: Among ¢, [A,] and ¢ [A], one is fuzzy based on possibility

distribution whereas another is crisp.

Case 3: 1, [A,] and ¢ [A,] are all fuzzy.

Example: Consider two fuzzy relations » and s in Figure 7-8, which have
common key Name.

Fuzzy relation Fuzzy relation s
Name Birth Date Weight Name Birth Date Weight
Tom 28/12/70 70.6 Tom 12/28/70 150
John 01/10/62 82.7 John 10/01/62 about 180
Chris 22/05/58 about 88.5 Chris 05/22/58 about 192

Figure 7-8. Fuzzy Relations with Attribute Domain Conflicts

Here, attribute Birth Date in r and attribute Birth Date in s are with form
“dd/mm/yy” and format “mm/dd/yy”, respectively. So there exists data format
conflict between them. Attribute Weight in r is real type with unit kilogram
whereas attribute Weight in s is integer type with unit pound. So there exist
data unit conflict and data type conflict between them simultaneously.
Viewed from attribute values, among tuple <Tom, 28/12/70, 70.6> in r and
tuple <Tom, 12/28/70, 150> in s, their values on attribute Weight are crisp
real 70.6 kilogram and crisp integer 150 pound, respectively. But among
tuple <John, 01/10/62, 82.7> in r and tuple <John, 10/01/62, about 180> in s,

7. The Fuzzy Relational Databases 137

their values on attribute Weighr are crisp real 82.7 kilogram and fuzzy
integer about 180 pound, respectively, and among tuple <Chris, 22/05/58,
about 88.5> in » and tuple <Chris, 05/22/58, about 192> in s, their values on
attribute Weight are fuzzy real about 88.5 kilogram and fuzzy integer about
192, respectively.

Conflicts Resolutions

Among the above-mentioned conflicts, some, including missing
attributes, attribute name conflicts, inconsistent crisp attribute values on
identical attribute domains and inconsistent crisp attribute values on different
attribute domains, have been investigated and resolved (Deen, Amin and
Taylor, 1987; Heimbigner and McLeod, 1985). In this section, we focus on
some new types of conflicts concerned with fuzzy databases.

Let » and s be fuzzy component relations from different component
databases. Let 7. and # be component tuples belonging to » and s,
respectively, and ¢, and £, have the same crisp key values, namely, they
describe the identical object in the real world. Now, we integrate ¢, and ¢, to
form a tuple ¢. It is clear that ¢ has the same key and key values as ¢, (or ¢,).
The other attribute values of ¢ are formed after resolving the conflicts
between semantically related attribute values. Here, we assume that there is
no attribute name conflicts in 7 and s because they can be resolved before.

Resolving Membership Degree Conflicts

First, consider the situation of missing membership degree. Let ¢, and ¢,
be tuples in r (K, X) and s (K, X, pD), respectively, where K is key, X is a set
of common attribute, and pD is membership degree attribute. Let ¢, [K] and ¢,
[K] are crisp and ¢, [K] = ¢, [K]. Then ¢, and ¢, denote the same real-world
object. Assume that there is no any conflict in ¢, [X] and #, [X]. It is clear that
the conflict of missing membership degree emerges in ¢, and f. Tuple ¢
formed by integrating ¢, and ¢, is on schema {X, X, pD}, in which ¢ [K] =,
[K] =t [K] and ¢ [X] = ¢. [X] = 1, [X]. It is clear that ¢ [pD] = max (1.0, ¢,
[pD) = 1.0.

Now let us focus on the situation of inconsistent membership degree. Let
r and s be r (K, X, pD) and s (K, X, pD), respectively, where K, X and pD
have the same meanings as the above. Let ¢, [K] and ¢, [K] are crisp and ¢, [K]
=1, [K]. Assume that 7, [X] and ¢, [X] are crisp or fuzzy simultaneously. If ¢,
[X] and ¢, [X] are fuzzy, then they must be equivalent to each other. Assume
t. [pD] # t; [pD]. It can be seen that . and #, denote the same real-world
object and there is the conflict of inconsistent membership degree between ¢,
and ¢, For tuple ¢, its schema is {K, X, pD}, and t [K] =¢, [K] = ¢, [K], t [X] =
t, [X] = 1, [X], and 1 [X] = max (z, [pD}, t, [pD)).

138 Chapter 7

Example: Consider the relations in Figure 7-6. Utilizing the methods to
resolving membership degree conflicts given above, we have the integrated
relations shown in Figure 7-9.

The fuzzy relation after integrating », and » The fuzzy relation after integrating r, r, and r;
D Name pD D Name pD
9540 John 0.8 9540 John 1.0

Figure 7-9. Integrated Fuzzy Relations After Resolving Membership Degree Conflicts

Resolving Attribute Value Conflicts in Identical Attribute Domains
Let #, and ¢, be component tuples in » (K, X) and s (K, X), respectively,
where K is key and X is a set of common attribute. In order to simplify the
discussion, here, membership degree attributes are not considered. If they are
included, the potential conflicts can be resolved by applying the methods
above. Assume ¢, [K] and ¢, [K] are crisp and ¢, [K] = ¢, [K]. At this moment,
the schema of integrated target relation is {K, X} and 7 [K] = ¢, [K] = £ [K].
Let A € X, then
(a) When ¢, [A] and ¢, [A] are crisp and 7, [A] # ¢, [A], the conflict of
inconsistent crisp attribute values occurs and ¢ [A] = [¢. [A], £, [A]],
being a partial value (Chen, Tsai and Koh, 1996). Of course, if ¢, [A]
=1, [A] t[A] =1 [A] =1 [A]
(b) When ¢, [A] and ¢, [A] are crisp and fuzzy, respectively, the conflict
of missing fuzzy attribute values occurs. Assume #, [A] is crisp and ¢
[A] is fuzzy. Then t [A] = ¢, [A].
(c) When both ¢, [A] and ¢ [A] are fuzzy and ¢, [A] # ¢, [A], the conflict
of inconsistent fuzzy attribute values occurs and ¢ [A] = ¢, [A] Uy ¢,
[A], where “U;” is a fuzzy union operation defined Section 7.3.4. Of
course, if ¢, [A] = £, [A], t [A] = ¢. [A] = t, [A]. That fuzzy union
operation is adopted, not being intersection operation, difference
operation and so on, is to avoid information missing in the
integration. The union of two fuzzy values on the same universe of
discourse U, say A and B with the possibility functions m and g, is
still a fuzzy set on U with the possibility function ma o: U— [0, 1],
where

Vu € U, np s (4) = max (m (1), 1 (u)).

Example: Consider the relations in Figure 7-7. Assume the domain of
attribute Age is integer interval [5, 50] and three fuzzy values "about 21",
"about 23", and "about 25" are represented as possibility distributions
{0.6/19, 0.8/20, 1.0/21, 0.9/22, 0.8/23, 0.6/24}, {0.6/20, 0.8/21, 1.0/22,
1.0/23, 0.9/24, 0.7/25}, and {0.6/22, 0.7/23, 0.8/24, 1.0/25, 0.7/26, 0.5/27},

7. The Fuzzy Relational Databases 139

respectively. Then we have the relation in Figure 7-10 after integrating » and
s.

The fuzzy relation after integrating » and s

Name Age
Tom {25, 27}
John {0.6/22, 0.7/23, 1.0/24, 1.0/25, 0.7/26, 0.5/27}

Mary {0.6/19, 0.8/20, 1.0/21, 1.0/22, 1.0/23, 0.9/24, 0.7/25}

Figure 7-10. Integrated Fuzzy Relation After Resolving Attribute Value Conflicts in Identical
Attribute Domains

Resolving Attribute Value Conflicts in Inconsistent Attribute Domains

In order to resolve attribute value conflicts in inconsistent attribute
domain, the conflicts of attribute domains should be resolved firstly. For this
purpose, the component relations are converted into other relations, called
virtual component relations. The attributes in virtual component relations are
called virtual attributes (DeMichiel, 1989; Tseng, Chen and Yang, 1993).
Note that there are no attribute domain conflicts in virtual component
relations because they have been resolved by mapping an attribute concerned
with domain conflicts in an original component relation to the corresponding
virtual attribute. It is clear that such mappings must also been done between
a tuple in original component relation and the corresponding tuple in virtual
component relation, called virtual tuple, or more precisely between an
attribute value and the value of corresponding virtual attribute. Instead of
integrating original component relations, their virtual component relations
are integrated to form the target relation.

One-to-One Mapping. According to different types of attribute domain
conflicts, the above-mentioned mappings can be classified into one-to-one
mapping, many-to-one mapping, and one-to-many mapping. The one-to-one
mapping produces a certain result for one data item to be mapped. Therefore,
a crisp attribute value in original component relation is mapped into another
crisp value of the corresponding virtual attribute. In addition, a fuzzy
attribute value in original component relation is mapped into another fuzzy
value of the corresponding virtual attribute. The difference between these
two fuzzy values represented by possibility distributions is only their
supports but they have the one-to-one relationships. A pair of values with
one-to-one relationship has the same possibility.

Example: Let an original component tuple be ¢, and the corresponding
virtual component tuple be #,’. Let 4 be an attribute in the schema of ¢, and
A’ be the corresponding virtual attribute. They have domains of integer with
units “cm” and “mm”, respectively. Utilizing one-to-one mapping, we have
the result shown in Figure 7-11.

140 Chapter 7

A4
t,_10.5/10,0.7/11, 1.0/12, 0.9/13, 0.8/14, 0.6/15}

AI
£ {0.5/100, 0.7/110, 1.0/120, 0.9/130, 0.8/140, 0.6/150}

Figure 7-11. Fuzzy Attribute Value Conversion via One-to-One Mapping

Many-to-One Mapping. The many-to-one mapping also produces a
certain result for one data item to be mapped. A crisp attribute value in
original component relation is mapped into another crisp value of the
corresponding virtual attribute. A fuzzy attribute value in original
component relation is mapped into another fuzzy value of the corresponding
virtual attribute. However, since there is a many-to-one mapping
relationship, several elements in the support of the former are mapped into
one element in the support of the later, which possibility should be the
maximum one in the possibilities of these elements.

Example: Let ¢, t,’, A, and A’ be the same as Figure 7-11. But 4, and 4’
have domains of real and integer, respectively. Utilizing many-to-one
mapping, we have Figure 7-12.

A4
{0.4/10.4, 0.5/10.8, 0.6/11.2, 0.7/11.6, 0.8/12.0,
t 0.9/12.4, 1.0/12.8, 0.9/13.2, 0.8/13.6, 0.7/14.0,
0.6/14.4, 0.5/14.8, 0.4/15.2}

AI
{0.4/10, 0.6/11, 0.9/12, 1.0/13, 0.8/14, 0.5/15}

»

Figure 7-12. Fuzzy Attribute Value Conversion via Many-to-One Mapping

Data format conflicts, data type conflicts, and some data unit conflicts
can be resolved by utilizing one-to-one and many-to-one mappings. Since
the virtual component relations should be integrated to form the target
relation instead of original component relations and they have no attribute
domain conflicts, attribute value conflicts are that in identical attribute
domains. At this moment, we can use the methods of resolving attribute
value conflicts in identical attribute domains to resolve them.

One-to-Many Mapping. It should be noticed that some data unit conflicts
can been only resolved by utilizing one-to-many mapping. The one-to-many
mapping produces a list or set of value for one data item to be mapped. A
crisp attribute value in original component relation is mapped into a partial

7. The Fuzzy Relational Databases 141

value of the corresponding virtual attribute (DeMichiel, 1989; Tseng, Chen
and Yang, 1993). A partial value can be regarded as a special case of fuzzy
value, in which the possibility of each element is one. A fuzzy attribute value
in original component relation is mapped into another fuzzy value of the
corresponding virtual attribute. However, since there is a one-to-many
mapping relationship, one element in the support of the former is mapped
into several elements in the support of the later, where the possibility of each
element should be the possibility of the original element.

Example: Let t. be original component tuple and 4 be an attribute,
denoted transport forms, in the schema of . Assume the domain of 4 is
{Land, Air, Water} and ¢, [4] = {0.4/Air, 0.7/Land, 0.9/Water}. If the
domain of the virtual attribute 4' which corresponds to A4 is {Train, Truck,
Plane, Ship}, utilizing one-to-many mapping, we have Figure 7-13.

A
L {{0.4/Air, 0.7/Land, 0.9/Water}

A ’
L' {0.4/Plane, 0.7/Train, 0.7/Truck, 0.9/Ship}

Figure 7-13. Fuzzy Attribute Value Conversion via One-to-Many Mapping

Utilizing one-to-many mapping, some data unit conflicts can be resolved.
Therefore, the virtual component relations to be integrated have no attribute
domain conflicts. At this moment, attribute value conflicts in the virtual
component relations are that in identical attribute domains, which can be
resolved by using the methods of resolving attribute value conflicts in
identical attribute domains.

7.8.2 Entity Identification in Fuzzy Multidatabases with
Incompatible Keys

In the above-mentioned discussion of multidatabase integration, there is an
assumption made; i.e., there is not any conflict on the keys. In other words,
the keys can be used to identify if two tuples from different relations refer to
the same real-world entity. However, the keys may be incompatible.

Equivalence of Two Entities

Let (Al, A2, ..., An) and s (B1, B2, ..., Bm) be two relations from
different databases, which are to be integrated. Assume {C1, C2, ..., Ck} =
{Al, A2, ..., An} N {B1, B2, ..., Bm} and the candidate keys of » and s are
not included in {C1, C2, ..., Ck} simultaneously. That means that » and s

142 Chapter 7

have incompatible keys. At this point, for two tuples from » and s
respectively, determining if they refer to the same real world entities is the
key of implementing multidatabase integration. As no common key, the
compatible non-key attributes have to be used to help determine equivalent
entities (Chatterjee and Segev, 1991; Chen, Tsai and Koh, 1996; Dey, Sarkar
and De, 1998).

Different non-key attributes play different roles in entity identification.
Some may be dominant and some may be non-dominant. For example, the
name of a product is more important than the length of the product in entity
identification. Therefore, a weight wi is assigned to each compatible attribute
Ci according to its importance such that

O<wi<landZwi=1(=1,2,...,k).

Let ¢ and ¢, be tuples from r and s respectively. In order to denote the
possibility degree that # and ¢ refer to the same real world entity, the notion
of equivalence of # and ¢ is introduced. The equivalence of # and ¢ is
determined by the equivalence of the value of attribute Ci (0 < i< 1). Let the
equivalence of the values of attribute Ci in ¢, and ¢, be Fi (¢1 [Ci], £2 [Ci]),
where 0 < Ei (¢ [Ci], ¢ [Ci]) < 1. Then the equivalence of ¢, and f,, denoted
Pquivatence (¢, 15), 1s expressed as follows.

Pequivalence (tr, ts) =2 (El (tr [Cl], ts [CID X WI) (1 = 1: 2» cees k)

If Pequivalence (I &) = 0, #; and £, do not refer to the same real world entity and
they will not be integrated. If Peguivaience (4 %) = 1, % and £ refer to the same
real world entity and they will definitely be integrated into a new tuple. If 0
< Pequivalence (5 15) < 1, however, it is uncertain whether #. and ¢ refer to the
same real world entity or not and the new tuple integrated should be attached
t0 by Pequivaience (%> £5)- Such a tuple denotes uncertain probability information
and a probabilistic data model is hereby presented.

The above-mentioned approach for identifying entities without
incompatible key attributes was first introduced in (Chatterjee and Segev,
1991) for multidatabase integration. But some conflicts at instance level such
as missing data and mismatch domain were not considered. So the
computation of the equivalence of two attribute values was discussed under
the consideration of these conflicts (Chen, Tsai and Koh, 1996). It should be
noted that the conflict of missing data is caused by different attribute sets of
schema and missing attributes must not appear in common non-key
attributes. Therefore, the issue on missing data should not be considered in
estimating the equivalence. In addition, some new semantic conflicts
introduced in fuzzy multidatabases are not considered in (Chatterjee and

7. The Fuzzy Relational Databases 143

Segev, 1991; Chen, Tsai and Koh, 1996; Dey, Sarkar and De, 1998) since
the component relations are assumed to be crisp in their work. In the
following, the computation of the equivalence of two attribute values is
investigated under fuzzy multidatabases. Here, membership degree conflicts
and attribute name conflicts are ignored because they are assumed to be
resolved.

Evaluating the Equivalence of Attribute Values

Let {Cl, C2, ..., Ck} be common non-key attribute set of fuzzy
component relations » and s. Let £ and ¢ be two tuples from r and s
respectively. We evaluate the equivalence of attribute values ¢, [Ci] and ¢
[Ci], where Ci € {C1, C2, ..., Ck} and let Dom (Ci) = {vl, v2, ..., vl}.

Attribute Value Conflicts in Identical Attribute Domains

As attribute domains are identical, ¢, [Ci] and #, [Ci] can directly be
compared. The following four cases can be identified during the evaluation
of the equivalence.

Case 1: consistent crisp attribute values.

t. [Ci] and ¢ [Ci] are all crisp and ¢, [Ci] = ¢, [Ci]. Then Ei (¢, [Ci], ¢ [Ci])
=1.

Case 2: inconsistent crisp attribute values.

t; [Ci] and ¢ are all crisp but ¢, [Ci] # £ [Ci]. Then £i (¢, [Cil, £ [Ci]) = 0.

Case 3: missing fuzzy attribute values.

Among £, [Ci] and £, one is fuzzy based on a possibility distribution
whereas the other is crisp. At this point, the crisp attribute value is regarded
as a special form of fuzzy value, where there is only one element in its
support and the possibility of this element is one. The equivalence of ¢, [Ci]
and ¢ [Ci] is essentially the equivalence degree of fuzzy data defined in
Section 7.3. Then

Ei (t, [Cil, £, [Ci]) = SE (, [Ci], £ [Ci]) = min (SID (t [Cil, t, [Ci]), SID
(& [Cil, £ [Ci])).

Case 4: inconsistent fuzzy attribute values.
t. [Ci] and £, [Ci] are all fuzzy. Being the same as the above, the
equivalence of ¢, [Ci] and #; [Ci] is the equivalence degree of fuzzy data and

Ei (4, [Cil, £, [Ci]) = SE (. [Cil, ¢, [Ci]) = min (SID (+, [Cil, £, [Ci]), SID
(& [Ci], « [Ci])).

Attribute Domain Conflicts

When there exist data format conflicts, data type conflicts, or data unit
conflicts, #, [Ci] and #, [Ci] cannot be directly compared. In order to estimate
the equivalence of #. [Ci] and ¢, [Ci], they should be converted into the values

144 Chapter 7

of virtual attributes by using one-to-one mapping, many-to-one mapping, or
one-to-many mapping, which are comparable. Then the equivalence of
original attribute values is evaluated by estimating that of corresponding
values of virtual attributes.

Assume that ¢, [Ci] is mapped into ¢ [Ci’], where Ci’ is a virtual
attribute of Ci and #, [Ci] may be a crisp value or a fuzzy value. Applying the
mapping approaches (one-to-one, many-to-one, or one-to-many), ¢, [Ci] can
be mapped into ¢’ [Ci’]. ¢, [Ci’] and ¢, [Ci] can be comparable and ¢, [Ci]
may be a crisp value or a fuzzy value also. Applying the evaluation
approaches given above, we can evaluate

Ei (¢, [Ci], [Ci]) = Ei (" [CV’], & [Ci)).

Example. Considering the fuzzy relations describing virtual enterprise
information in Figure 7-14, it is clear that there is no common key in 7 and s.
Therefore, we cannot directly know if two tuples from » and s refer to the
same real world entity.

The set of compatible attributes is {Name, Lead-time, Weight,
Transport}. Attribute Name plays a crucial role in entity identification, so
Wiame 1S designated 1/2. Wicad-time» Wweight ad Wrpngpor are designated 1/6,
respectively. It can be seen that there is a domain conflict between Lead-time
in 7 and Lead-time in s. The same situations can also be found in Weight and
Transport. In order to evaluate the equivalence of two tuples from 7 and s
respectively, say #, = <00061, Engine, 3, 40.2, Land> and #, = <0605,
Engine, about 21, 40, Train, John>, we assume that #, is mapped into a
virtual tuple #,’, which is compatible with ¢. Then ¢’ [Lead-time (Days)] =
21, ¢’ [Weight (kg)] =40, and ¢,” [Transport] = {Train, Truck}.

Fuzzy relation r

Part ID Name Lead-time (weeks) Weight (kg) Transport
00061 Engine 3 40.2 Land
00062 Gearbox 2 about 54.8 Water

Fuzzy relation s

Part ID Name Lead-time (days) Weight (kg) Transport Responsibility

0605 Engine about 21 40 Train John
0628 Gearbox about 14 55 Vessel Tom

Figure 7-14. Fuzzy Database Relations with Incompatible Keys for Integration

Let fuzzy value "about 21" be represented by a possibility distribution
{0.5/18, 0.7/19, 0.9/20, 1.0/21, 0.8/22, 0.6/23, 0.4/24}. Then we have
Ei (¢, [Name], t; [Name]) = Ei (Engine, Engine) = 1,

7. The Fuzzy Relational Databases 145

FEi(t, [Lead-time], t, [Lead-time]) = Ei (t,” {Lead-time], t, [Lead-time]) =
Ei(21, {0.5/18,0.7/19, 0.9/20, 1.0/21, 0.8/22, 0.6/23, 0.4/24}) = SE
({1/21}, {0.5/18, 0.7/19, 0.9/20, 1.0/21, 0.8/22, 0.6/23, 0.4/24}) =
10/49,

Ei (t, [Weight], t, [Weight]) = Ei (40, 40) = 1, and

Ei (¢, [Transport], t; [Transport)) = Ei (¢, [Transport), t, [Transport]) =
Ei ({Train, Truck}, Train) = SE ({1/Train, 1/Truck}, {1/Train}) = 1/2.

Therefore,
Pequivatence (¢, 1) = Ei (t, [Name], t, [Name]) X Wyame T+ Ei (1, [Lead-time], t,
[Lead-time]) X Wi cag-time + Ei (¢, [Weight], t, [Weight]) X Weign + Ei
(¢, [Transport}, t, [Transport]) X Wrgansport = 1 x 1/2 +10/49 x 1/6 + 1
x 1/6 +1/2 x 1/6 = 0.954,

If a threshold is given, say 0.95, tuples ¢. and ¢, from » and s respectively
are considered to refer to the same real world entity and is integrated into a
new tuple <00061, 0605, Engine, 21, 40, Land, John>. In order to represent
the uncertainty that ¢, may be equivalent to f,, the equivalence Pequivatence (¢
t;) should be attached to the integrated tuple, a tuple with probability.
Generally speaking, some attribute values of the tuple can be fuzzy since
component relations are fuzzy. Therefore, a data model for fuzzy
multidatabase integration is fuzzy attribute-based probabilistic one.
Similarly, tuples <00062, Gearbox, 2, about 54.8, Water> and <0628,
Gearbox, about 14, 55, ship, Tom> from » and s, respectively, can be
evaluated and integrated.

7.9 Summary

Focusing on the possibility-based fuzzy relational databases, in
particular, the extended possibility-based fuzzy relational databases, this
chapter investigated some major issues related to fuzzy relational databases
such as the database models, data redundancy, data integrity constraints,
relational algebra, database update, and multidatabases. Among these issues,
the update and integration of the fuzzy relational databases are rarely
discussed in the context of the fuzzy relational databases.

It should be noticed that, however, classical relational database model
and its extension of imprecision and uncertainty do not satisfy the need of
modeling complex objects with imprecision and uncertainty. So many
researches have been concentrated on the development of some database
models to deal with complex objects and uncertain data together. In next two
chapters (Chapter 8 and Chapter 9), the fuzzy nested relational databases and
the fuzzy object-oriented databases are presented, respectively.

146 Chapter 7

References

Ahmed, R., De Smedt, P., Du, W., Kent, W., Ketabchi, M. A., Litwin, W., Rafii, A. and Shan,
M. C, 1991, The pegasus heterogeneous multidatabase system, [EEE Computer, 24 (12):
19-27.

ANSVX3/SPARC, 1975, Study group on database management systems: interim report, FDT
(7) 2, Bulletin of ACM SIGFIDET.

Armstrong, W. W.,; 1974, Dependency structures of data base relationships, Proceedings of
the IFIP Congress, 580- 583.

Baldwin, J. F. and Zhou, S. Q., 1984, A fuzzy relational inference language, Fuzzy Sets and
Systems, 14: 155-174.

Beeri, C., Fagin, R. and Howard, J. H., 1977, A complete axiomatization for functional and
multivalued dependencies in database relations, ACM SIGMOD Conference, 47-61.

Bhattacharjee, T. K. and Mazumdar, A. K., 1998, Axiomatisation of fuzzy multivalued
dependencies in a fuzzy relational data model, Fuzzy Sets and Systems, 96 (3): 343-352.

Bosc, P. and Pivert, O., 1992, Some approaches for relational databases flexible querying,
Journal of Intelligent Information Systems, 1: 323-354.

Bosc, P. and Pivert, O., 1997, On the comparison of imprecise values in fuzzy databases,
Proceedings of the 1997 IEEFE International Conference on Fuzzy Systems, 2: 707-712.
Bosc, P. and Pivert, O., 2003, On the impact of regular functional dependencies when moving

to a possibilistic database framework, Fuzzy Sets and Systems, 140 (1): 207-227.

Bosc, P. and Pivert, O., 1995, SQLf: A Relational Database Language for Fuzzy Querying,
IEEE Transactions on Fuzzy Systems, 3 (1): 1-17.

Bosc, P., Dubois, D. and Prade, H., 1998, Fuzzy functional dependencies and redundancy
elimination, Journal of the American Society for Information Science, 49 (3): 217-235.
Breitbart, Y., Olson, P. L. and Thompson, G. R., 1987, Database integration in a distributed
heterogeneous database System, Proceedings of IEEE International Conference on Data

Engineering, 301-310.

Buckles, B. P. and Petry, E. F., 1982, A fuzzy representation of data for relational database,
Fuzzy Sets and Systems, 7 (3): 213-226.

Chang, C. S. and Chen, A. L. P., 1998, Efficient refinement of uncertain data by fuzzy
integrity constraints, Information Sciences, 104 (3-4): 191-211.

Chatterjee, A. and Segev, A., 1991, Data manipulation in heterogeneous databases, SIGMOD
Record, 20 (4): 64-68.

Chatterjee, A. and Segev, A., 1995, Rule based joins in heterogeneous databases, Decision
Support Systems, 13 (3-4): 313-333.

Chen, A. L. P., 1990, Outerjoin optimization in multidatabase Systems, Proceedings of [EEE
International Symposium on Databases in Parallel and Distributed Systems, 211-218.

Chen, A. L. P, Tsai, P. S. M. and Koh, J. L., 1996, Identifying object isomerism in
multidatabase systems, Distributed and Parallel Databases, 4 (2): 143-168.

Chen, G. Q., 1999, Fuzzy Logic in Data Modeling; Semantics, Constraints, and Database
Design, Kluwer Academic Publisher.

Chen, G. Q., Kerre, E. E. and Vandenbulcke, J., 1994, A computational algorithm for the FFD
closure and a complete axiomatization of fuzzy functional dependency (FFD),
International Journal of Intelligent Systems, 9. 421-439.

Chen, G. Q., Kerre, E. E. and Vandenbulcke, J., 1996, Normalization based on functional
dependency in a fuzzy relational data model, Information Systems, 21 (3): 299-310.

Chen, G. Q., Vandenbulcke, J. and Kerre, E. E., 1992, A general treatment of data redundancy
in a fuzzy relational data model, Journal American Society of Information Sciences, 43 (3):
304-311.

7. The Fuzzy Relational Databases 147

Codd, E. F., 1970, A relational model of data for large shared data banks, Communications of
The ACM, 13 (6): 377-387.

Codd, E. F., 1986, Missing information (applicable and inapplicable) in relational databases,
SIGMOD Record, 15: 53-78.

Cubero, J. C. and Vila, M. A., 1994, A new definition of fuzzy functional dependency in
fuzzy relational databases, International Journal of Intelligent Systems, 9 (5): 441-448.
Czejdo, B., Rusinkiewicz, M. and Embley, D. W., 1987, An approach to schema integration
and query formulation in federated database systems, Proceedings of IEEE International

Conference on Data Engineering, 477-484.

Deen, S. M., Amin, R. R. and Taylor, M. C., 1987, Data Integration in Distributed Databases,
IEEE Transactions on Software Engineering, 13: 860-864.

DeMichiel, L. G., 1989, Resolving database incompatibility: an approach to performing
relational operations over mismatched domains, JEEE Transactions on Knowledge and
Data Engineering, 1: 485-493.

Dey, D., Sarkar, S. and De, P., 1998, A probabilistic decision model for entity matching in
heterogeneous databases, Management Science, 44 (10): 1379-1395.

Dutta, S., 1991, Aroximate Reasoning by Analogy to Answer Null Query, International
Journal of Proximate Reasoning, 5: 373-398.

Fagin, R., 1977, Multivalued Dependencies and a New Normal Form for Relational
Databases, ACM Transactions on Database Systems, 2 (3): 262-278.

Flach, P. A. and Savnik, I, 1999, Database dependency discovery: a machine learning
approach, 41 Communications, 12 (3): 139-160.

Grant, J., 1979, Partial values in a tabular database model, Information Processing Letters, 9:
97-99.

Hale, J. and Shenoi, S., 1996, Analyzing FD inference in relational databases, Data &
Knowledge Engineering, 18 (2): 167-183.

Heimbigner, D. and McLeod, D., 1985, A federated architecture for information management,
ACM Transactions on Office Information Systems, 3: 253-278.

Jyothi, S. and Babu, M. S., 1997, Multivalued dependencies in fuzzy relational databases and
lossless join decomposition, Fuzzy Sets and Systems, 88 (3): 315-332.

Kerre, E. E., 1988, Fuzzy sets and approximate reasoning, Lecture notes for the course
special topics in computer sciences, Lincoln, NB: University of Nebraska.

Kim, W. Choi, I, Gala, S. and Scheevel, M., 1995, On resolving schematic heterogeneity in
multidatabase systems, Modern Database Systems: the Object Model, Interoperability,
and Beyond, Addison-Wesley ACM Press, 521-550.

Liao, S. Y., Wang, H. Q. and Liu, W. Y., 1999, Functional dependencies with null values,
fuzzy values, and crisp values, IEEE Transactions on Fuzzy Systems, 7 (1): 97-103.

Lim, E. P., Srivastava, J. Prabhakar, A. and Richardson, J., 1996, Entity identification in
database integration, Information Sciences, 89 (1-2): 1-38.

Lipski, W., 1979, On semantic issues connected with incomplete information databases, ACM
Transactions on Database Systems, 4 (3): 262-296.

Litwin, W., Abdellatif, A., Nicolas, B., Vigier, P. and Zeronnal, A., 1987, MSQL: a multi-
database manipulation language, Information Science, 49: 59-101.

Litwin, W., Mark, L. and Roussopoulos, N., 1990, Interoperability of multiple autonomous
databases, ACM Computing Surveys, 22: 267-293.

Liu, W. Y., 1992, The reduction of the fuzzy data domain and fuzzy consistent join, Fuzzy
Sets and Systems, 51 (1): 89-96.

Liu, W. Y., 1993, Extending the relational model to deal with fuzzy values, Fuzzy Sets and
Systems, 60 (2): 207-212.

148 Chapter 7

Liu, W. Y., 1997, Fuzzy data dependencies and implication of fuzzy data dependencies, Fuzzy
Sets and Systems, 92 (3): 341-348.

Ma, Z. M., Zhang, W. J. and Ma, W. Y., 1999, Assessment of data redundancy in fuzzy
relational databases based on semantic inclusion degree, Information Processing Letters,
72 (1-2): 25-29.

Ma, Z. M., Zhang, W. J. and Mili, F., 2002, Fuzzy data compression based on data
dependencies, International Journal of Intelligent Systems, 17 (4): 409-426.

Mena, E., Illarramendi, A., Kashyap, V. and Sheth, A., 2000, OBSERVER: an approach for
query processing in global information systems based on interoperation across pre-existing
ontologies, International Journal Distributed and Parallel Databases, 8 (2): 223-271.

Motro, A., 1987, Super-views: virtual integration of multiple databases, /[EEE Transactions
on Software Engineering, 13: 785-798.

Parent, C. and Spaccapietra, S., 1998, Issues and approaches of database integration,
Communications of the ACM, 41 (5): 166-178.

Petry, F. E., 1996, Fuzzy Databases: Principles and Applications, Kluwer Academic
Publisher.

Prade, H. and Testemale, C., 1984, Generalizing database relational algebra for the treatment
of incomplete or uncertain information and vague queries, Information Sciences, 34: 115-
143.

Pu, C., 1991, Key equivalence in heterogenerous databases, Proceedings of International
Workshop on Interoperability in Multidatabase Systems, 314-316.

Raju, K. V. S. V. N. and Majumdar, A. K., 1988, Fuzzy functional dependencies and lossless
join decomposition of fuzzy relational database system, ACM Transactions on Database
Systems, 13 (2): 129-166. '

Rundensteiner, E. A., Hawkes, L. W. and Bandler, W., 1989, On nearness measures in fuzzy
relational data models, International Journal Approximate Reasoning, 3: 267-298.

Savnik, 1. and Flach, P. A., 2000, Discovery of Multivalued Dependencies from Relations,
Intelligent Data Analysis, 4 (3-4): 195-211.

Shenoi, S. and Melton, A., 1989, Proximity relations in the fuzzy relational databases, Fuzz
Sets and Systems, 31 (3): 285-296.

Sozat, M. 1. and Yazici, A., 2001, A Complete axiomatization for fuzzy functional and
multivalued dependencies in fuzzy database relations, Fuzzy Sets and Systems, 117 (2):
161-181.

Takahashi, Y, 1993, Fuzzy database query languages and their relational completeness
theorem, /IEEE Transactions on Knowledge and Data Engineering, 5 (1): 122-125.

Tripathy, R. C. and Sakena, P. C., 1990, Multivalued dependencies in fuzzy relational
databases, Fuzzy Sets and Systems, 38 (3): 267-279.

Tseng, F. S. C,, Chen, A. L. P. and Yang W. P, 1993, Answering heterogeneous database
queries with degrees of uncertainty, Distributed and Parallel Databases: An International
Journal, 1: 281-302.

Umano, M. and Fukami, S., 1994, Fuzzy relational algebra for possibility-distribution-duzzy-
relational model of fuzzy data”, Journal of Intelligent Information Systems, 3: 7-27.

van Schooten, A., 1988, Design and implementation of a model for the presentation and
manipulation of uncertainty and imprecision in databases and expert systems, Ph.D. thesis
in Dutch, Belgium: University of Gent, 1988.

Wang, K. and Zhang, W., 1996, Detecting data inconsistency for multidatabases, Proceedings
of the 1996 International Conference on Parallel and Distributed Computing Systems, 2:
657-663.

Wiederhold, G., 2000, Future needs in integration of information, International Journal of
Cooperative Systems; 9 (4): 449-772.

7. The Fuzzy Relational Databases 149

Yan, M. H. and Fu, A. W.-C., 2001, Algorithm for discovering multivalued dependencies,
Proceedings of the200] ACM International Conference on Information and Knowledge
Management, 556-558.

Yazici, A. and George, R., 1999, Fuzzy Database Modeling, Physica-Verlag.

Zadeh, L. A., 1965, Fuzzy sets, Information & Control, 8 (3): 338-353.

Zadeh, L. A., 1975, The concept of a linguistic variable and its application to approximate
reasoning, Information Sciences, 8: 119-249, 301-357; 9: 43-80.

Zhang, W. N,, Laun, E. and Meng, W. Y., 1997, A methodology of integrating fuzzy
relational databases in a multidatabase systems, Proceedings of the 5th International
Conference on Database Systems for Advanced Applications, 401-410.

Chapter 8

THE FUZZY NESTED RELATIONAL
DATABASES

8.1 Introduction

The normalization, being one kind of constraints, is proposed in
traditional relational databases. Among various normalized forms, first
normal form (INF) is the most fundamental one, which assumes that each
attribute value in a relational instance must be atomic. As we know, the real-
world applications are complex, and data types and their relationships are
rich as well as complicated. The INF assumption limits the expressive
power of traditional relational database model. Therefore, some attempts to
relax INF limitation are made and one kind of data model, called non-first
normal (or nested) relational database model have been introduced, where
attribute values may be atomic or set-valued and even relations themselves
(Colby, 1990; Makinouchi, 1977; Ozsoyoglu, Ozsoyoglu and Matos, 1987;
Roth, Korth and Batory, 1987; Schek and Scholl, 1986). Such database
model is also called NF* one simply. NF” data models based on relational
data model can model complex structures of objects and the relationship
among them.

A NF® data model containing fuzzy information accommodates
uncertainty and complexity of the real-world objects simultaneously.
Therefore, some researches have concentrated on introducing imprecise and
uncertain information into NF? relational databases. In (Levene, 1992; Roth,
Korth and Silberschatz, 1989), a NF? database model with null values is
presented. In (Yazici ef al, 1999), uncertain null values, set values, range
values (partial values and value intervals), and fuzzy values are all modeled
in NF? data model and the extended NF” algebra is given. It should be noted

152 Chapter 8

that, however, the operations for the extended NF? relational algebra in
(Yazici ef al, 1999) mainly focus on two restructuring operations: Merge and
Unmerge. The definitions for basic set operations are brief that fuzzy data
redundancies and their removals are not investigated fully. In particular,
fuzzy data in the extended NF? data model of (Yazici et al, 1999) are
similarity-based (Buckles and Petry, 1982). In this chapter, we focus on
extended possibility-based representation of fuzzy data, where the fuzziness
of data comes from possibility distributions (Kerre, 1988; Prade and
Testemale, 1984) over universes of discourse as well as similarity (Buckles
and Petry, 1982; Yazici er al, 1999) (proximity or resemblance
(Rundensteiner, Hawkes and Bandler, 1989) relations. We introduce
extended possibility-based fuzzy data into nested relational databases and
define fuzzy nested algebra.

8.2 The Fuzzy Nested Relational Models

An extended possibility-based fuzzy NF> relational schema is a set of
attributes (A1, A2, ..., An, pM) and their domains are DI, D2, ..., Dn, DO,
respectively, where Di (1 <i < n) can be one of the following:

(a) The set of atomic values. For any an element ai € Di, it is a typical

simple crisp attribute value.

(b) The set of null values, denoted ndom, where null values may be unk,

inap, nin, and onul.

(c) The set of fuzzy subset. The corresponding attribute value is an

extended possibility-based fuzzy data.

(d) The power set of the set in (1). The corresponding attribute value, say

ai, is multivalued one with the form of {ail, ai2, ..., aik}.

(e) The set of relation values. The corresponding attribute value, say ai,

is a tuple of the form <ail, ai2, ..., aim> which is an element of Dil x
Di2 x ... x Dim (m > 1 and 1 <i <n), where each Dij (1 <j < m) may
be a domain in (a), (b), (c), and (d) and even the set of relation
values.

The domain Dy is a set of atomic values and each value is a crisp one
from the range [0, 1], representing the possibility that the correspond tuple is
true in the NF” relation. We assume that the possibilities of all tuples are
precisely one in the thesis. Then for an attribute A; € R (1 < i < n), its
attribute domain is formally represented as follows:

1, =dom | ndom | fdom | sdom | <B; : 1y, B2 : T, ..oy, B @ Ti

where B1, B2, ..., Bm are attributes.

8. The Fuzzy Nested Relational Databases 153

A relational instance r over fuzzy NF? schema Al T, Ay T v AT Th)
is a subset of Cartesian product 7 x T, X ... X T,. A tuple in r with the form of
<al, a2, ..., an> consists of n components. Each component ai (1 <i < n)
may be an atomic value, null value, set value, fuzzy value, or another tuple.

An example of fuzzy NF? relation is shown in Table 8-1. It can be seen
that Tank Id and Start_data are crisp atomic-valued attributes, Tank_body is
a relation-valued attribute, and Responsibility is a set-valued attribute. In
attribute Tank body, two component attributes Volume and Capacity are
fuzzy ones.

Table 8-1. Pressured Air Tank Relation

Tank_ Tank_body Start_ Responsi
D Body ID Material Volume Capacity Date bility
TA1 BOO01 Alloy about about 01/12/99 John
2.5e+03 1.0e+06
TA2 BO02 Steel about about 28/03/00 {Tom,
2.5e+04 1.0e+07 Mary}

Now let us concentrate on the redundancies of tuples in a fuzzy NF?
relation. First, let us look at two values on a structured attribute a;, = (Ajl:
Tajl, AJ2! Taj, ..., AJM: Tajm) and a;” = (Ajl: map’, Aj2: map’, ..., Ajme
Taim”), Which consist of simple attribute values, crisp (atomic and set-valued)
or fuzzy, on the schema R (Ajl, Aj2, ..., Ajm). There is a resemblance
relation on each attribute domain Djk (1 < £ <m) and ajk € [0, 1] (1 £k <
m) is the threshold on the resemblance relation. Let B € [0, 1] be a given
threshold. g; and g;” are a-B-redundant if and only if for k=1, 2, ..., m, min
(SEajk (TcAjk, nAjk’)) > B holds true. min (SEajk (TEAjk, TEAjk,)) (1 <k< m) is
called the equivalence degree of structured attribute values.

Consequently, the notion of equivalence degree of structured attribute
values can be extended for the tuples in fuzzy nested relations to assess tuple
redundancies. Informally, any two tuples in a nested relation are redundant,
if, for pair of the corresponding attribute values, the equivalence degree is
greater than or equal to the threshold value. If the pair of the corresponding
attribute values is simple, the equivalence degree is one for two values. For
two values of structured attributes, however, the equivalence degree is one
for structured attributes. Two redundant tuples ¢ and ¢’ are written ¢ = ¢

8.3 Algebra Operations

Based on the NF* database model without imprecision and uncertainty,
the ordinary relational algebra has been extended. In addition, two new
restructuring operators, called the Nest and Unnest (Ozsoyoglu, Ozsoyoglu
and Matos, 1987; Paredaens and Gucht, 1992; Roth, Korth and Batory,

154 Chapter 8

1987) (as well as Pack and Unpack in (Ozsoyoglu, Ozsoyoglu and Matos,
1987)), have been introduced. The Nest operator can obtain the nested
relation including complex-valued attributes. The Unnest operator is used to
flatten the nested relation. That is, it takes a relation nested on a set of
attributes and desegregates it, creating a “flatter" structure. In the following,
we define relational operations for fuzzy nested relational databases.

8.3.1 Traditional Relational Operations

Union and Difference: Let r and s be two union-compatible fuzzy nested
relations. Then

rus=min({t|tervites})

and
r—s={t|tern(Vves) (tv)}

Here, the operation min () means to remove the fuzzy redundant tuples in »
and s. Of course, the threshold value should be provided for the purpose.

Cartesian Product. Let r and s be two fuzzy nested relations on schemas
R and S, respectively. Then 7 x s is a fuzzy nested relation with the schema R
U §. The formal definition of Cartesian product operation is as follows.

rxs={t|t(R)yernt(S e s}

Projection. Let r be a fuzzy nested relation on the schema R and S — R.
Then the projection of 7 on the schema S is formally defined as follows.

s (@) =min({t[(Vver)t=v()})

Here, an attribute in S may be of the form B.C, in which B is a structured
attribute and C is its component attribute. Being the same as union operation,
projection operation also needs to remove fuzzy redundant tuples in the
result relation after the operation.

Selection. In classical relational databases, the selection condition is of
the form X 6 ¥, where X is an attribute, Y is an attribute or a constant value,
and 8 € {= # >, 2, <, <}. In order to implement fuzzy query for fuzzy
relational databases, “6” should be fuzzy, denoting ~, # >, <, >, and <.In
addition, X is only a simple attribute or the simple attribute of a structured
attribute but ¥ may be one of the following.

(a) A constant, crisp or fuzzy one;

8. The Fuzzy Nested Relational Databases 155

(b) A simple attribute;

(c) The simple component attribute of a structured attribute, having the
form A. B, where A is a structured attribute and B is its simple
component attribute.

Assume that there is a resemblance relation on the universe of discourse
and o is the threshold on it. Then the fuzzy comparison operations are
defined as follows:

(a) X~ Yiff SE, (X, ¥) = B, where B is a selected cut (the followings are

the same).

(b) X#Yiff SE, (X, Y) <.

(c) X > Yiff X# Y and min (Supp (X)) > min (Supp (T)).

() X>Yiff XsYorX > Y.

(e) X< Yiff X#Y and min (Supp (X)) <min (Supp (})).

) X< YiffXxYorX<7Y.

Depending on ¥, the following situations can be identified for the selection
condition X 0 Y. Let X be the attribute A;: 1; in a fuzzy nested relation.

(a) A; O ¢, where ¢ is a crisp constant. According to T;, the definition of

A, 0 ¢ is as follows:

if 1; is dom, A; 6 c is a traditional comparison and 6 € {=, = > < >, <};

if 7; is fdom, A; © c is a fuzzy comparison and 6 € {~, #, >, <, >, < };

if t; is ndom, A; O c is a null comparison and regarded as the special
fuzzy comparison;

if 1; is sdom, A; 6 c is a element-set comparison. Then A; 6 ¢ if ¢ and any

element in the value of Ai of a tuple satisfy the “6”.

(b) A; 0, where fis a fuzzy value.

if 1; is dom, fdom, or ndom, A; © fis a fuzzy comparison and 6 € {=, #,

- H =< > t 2 j };

if i is sdom, A; O fis a fuzzy set comparison. Then A; 6 fif f and any

element in the value of Ai of a tuple satisfy the fuzzy “0”, where 6 € {~, #

s 7 X, 2, 2 }

(c) Ai0 Aj, where A;: T; is a simple attribute and i # j.

if 7; and t; are all dom, A; 6 A, is a traditional comparison;

if 7; and 1; are dom and fdom, fdom and fdom, or ndom and fdom, A; 0 A;

is a fuzzy comparison;

if 7; and t; are dom and ndom, A; 0 A, is a null comparison;

if 1; and 7; are dom and sdom, A; © A is a element-set comparison;

if 7; and 1; are fdom and sdom, A; © A; is a fuzzy set comparison;

if 7; and 7; are all ndom, A; © A, is a null-null comparison. Then A; 0 A; if

they have the same null values on the same universe of discourse;

if t; and 1; are ndom and sdom, A; 8 A; is a null-set comparison and

regarded as the special element-set comparison;

156 Chapter 8

if 1y and t; are sdom and sdom, A; © A; is a set-set comparison and

regarded as the special element-set comparison.

(d) Ai 8 A;. B, where A; is a structured attribute (i # j) and B is a simple

attribute. The situations are the same as those in above case (c).

In fuzzy nested relational databases, the selection condition is similar to
that in fuzzy relational databases except that the attribute may be of the form
B.C, where B is a structured attribute and C is its component attribute. Let O
be a predicate denoting the selection condition. The selection operation for a
fuzzy nested relation # is defined as follows.

oM ={tlternQ®}

8.3.2 Nest and Unnest Operations

In addition to some traditional relational operations, two restructuring,
called Nest and Unnest (called Pack and Unpack, Merge and Unmerge also
in literature), are also crucial for fuzzy nested relational databases. The Nest
operator can gain the nested relation including structured attributes. The
Unnest operator is used to flatten the nested relation. That is, it takes a
nested relation on a set of attributes and desegregates it, creating a "flatter"
structure.

Let r be a fuzzy nested relation with the schema R = {A, Ay, ..., A, ...,
Ay, ..., Ay}, where 1 < i, £k < n. Now ¥ = {A,, ..., A} is merged into a
structured attribute B and a new fuzzy nested relation s is formed, which
schema is S = {A;, Ay, ..., A, B, Ak, ..., Ay}, The following notation is
used to represent the Nest operation above.

SO =TyLog(rR)={o[(R-VUB]|(Fu)(vVv)(ueraveraSE
W[R-TYLV[R-YD<PBro[R-TY]=u[R-Y]Ao[B]=u[l])Vv
Vuy(VWy(ueraveranSEWU[R-TY],VIR-T])2BA[R-Y]=u
[R-TIUv[R-TY]ro[B]=u[Y]UvI[I])}

It can be seen that in the process of the Nest operation on attribute sets Y
to B, multiple tuples in » which are fuzzily equivalent on the attribute set R —
Y are merged to form a tuples of s. Such merging operation is respectively
completed on attribute sets R — Y and Y. On the R - Y, fuzzy union Uy is
used and for an attribute C € R — Y, the value of C of the created tuple is an
atomic value, crisp or fuzzy. The value of an attribute B. C € Y of the
created tuple, however, is a set value and the common union is used.

Example 8.1. Consider the fuzzy nested relation shown in Table 8-2. We
want to implement the Nest operation for the relation by grouping attributes

8. The Fuzzy Nested Relational Databases 157

B and C under a structured attribute X. Let the given threshold 3 = 0.85. The
resulting relation will be the fuzzy nested relation shown in Table 8-3.

Table 8-2. Fuzzy Relation r

4 B C D

al bl cl {0.2/d1, 0.5/d2, 0.8/d3}
al b2 c2 {0.5/d2, 0.9/d3}

al b3 c3 {0.1/d1, 0.5/d2, 0.9/d3}

Table 8-3. Fuzzy Nested Relation I' g ¢y . x (#)

A X D
B C

al {bI,b2,b3} _ {cl,c2,¢3} __ {0.2/d1, 0.5/d2, 0.9/d3}

Another restructuring operation, called Unnest, is an inverse of Nest
under certain conditions. In a classical nested relation, this condition is that
the nested relation is in Partitioned Normal Form (PNF) (Thomas and
Fischer, 1986). A relation is in PNF if and only if

(a) all of a subset of the simple attributes forms a relation key and

(b) every sub-relation is in PNF.

Let s be a fuzzy nested relation with the schema S = {A, A,, ..., Ai1, B,
Ag+1, ---» Ap}, where B is a structured attribute and B : {A,, ..., Ax}. Unnest
operation products a new fuzzy nested relation 7, which schema is R = {A;,
Az, caey Ai-la Ai, ceny Ak, Ak+1, cees An}, i‘e., R=S-Bu {Ai, ceey Ak} The
following notation is used to represent the Unnest operation above.

r(R)=Ep(S)={tI(R-B)U { Aj ..., A }][(Vo) (uesnt[R-
B]=u[R-B]At[A... A € u[B])}

83 Summary

The requirement of modeling complex objects as well as information
imprecision and uncertainty has challenged current database technology.
Classical relational databases and their extensions of processing imprecise
and uncertain data do not satisfy such need. So fuzzy extensions of post-
relational data models have been proposed and their fuzzy extensions have
recently received increasing attention (de Caluwe, 1998; Ma, 2005).

This chapter introduces fuzzy data into nested relational database model.
The fuzzy data here is the more general form, namely, extended possibility-
based fuzzy data, which is represented by possibility distribution over a
universe of discourse and meanwhile a resemblance relation on the universe
is in effect. We give the structure of fuzzy nested relational model and the

158 Chapter 8

approach for assessing fuzzy data redundancies. On the basis, the algebra is
defined for manipulating fuzzy and complex data in the chapter.

References

Buckles, B. P. and Petry, F. E., 1982, A fuzzy representation of data for relational database,
Fuzzy Sets and Systems, 7 (3): 213-226.

Colby, L. S., 1990, A recursive algebra for nested relations, Information Systems, 15 (5): 567-
662.

de Caluwe, R. (editor), 1998, Fuzzy and Uncertain Object-Oriented Databases: Concepts and
Models, World Scientific Pub Co.

Kerre, E. E., 1988, Fuzzy Sets and Approximate Reasoning. Lecture Notes for the Course
(Special Topics in Computer Sciences). Lincoln, NB: University of Nebraska.

Levene, M., 1992, The Nested Universal Relation Database Model, Lecture Notes in
Computer Science No. 595, Springer-Verlag, Berlin.

Ma, Z. M. (editor), 2004, Advances in Fuzzy Object-Oriented Databases: Modeling and
Applications, 1dea Group Publishing.

Makinouchi, A., 1977, A consideration on normal form of not-necessarily normalized
relations in the relational data model, Proceedings of Third International Conference on
Very Large Databases, Tokyo, Japan, October, 447-453.

Ozsoyoglu, G., Ozsoyoglu, Z. M. and Matos, V., 1987, Extending relational algebra and
relational calculus with set-valued attributes and aggregate functions, 4CM Transactions
on Database Systems, 12 (4): 566-592.

Paredaens, J. and Gucht, D. V., 1992, Converting nested algebra expressions into flat algebra
expressions, ACM Transactions on Database Systems, 17 (1): 65-93.

Prade, H. and Testemale, C., 1984, Generalizing database relational algebra for the treatment
of incomplete or uncertain Information and vague queries, fnformation Sciences, 34: 115-
143.

Roth, M. A, Korth, H. F. and Batory, D. S., 1987, SQL/NF: A query language for non-1NF
relational databases, Information Systems, 12: 99-114.

Roth, M. A, Korth, H. F. and Silberschatz, A., 1989, Null values in nested relational
databases, Acta Informatica, 26: 615-642.

Rundensteiner, E. A., Hawkes, L. W. and Bandler, W., 1989, On nearness measures in fuzzy
relational data models, International Journal of Approximate Reasoning, 3: 267-98.

Schek, H. I. and Scholl, M. H., 1986, The relational model with relational-valued attributes,
Information Systems, 11 (2): 137-147.

Thomas, S. J. and Fischer, P. C., 1986, Nested relational structures, Advances in Computing
Research, 3: 269-307.

Yazici, A., Soysal, A., Buckles, B. P. and Petry, F. E., 1999, Uncertainty in a nested relational
database model, Data & Knowledge Engineering, 30: 275-301.

Chapter 9
THE FUZZY OBJECT-ORIENTED DATABASES

9.1 Introduction

Classical relational database model and its extension of imprecision and
uncertainty do not satisfy the need of modeling complex objects with
imprecision and uncertainty. So many researches have been concentrated on
the development of some database models to deal with complex objects and
uncertain data together. In (Yazici et al., 1999), an extended nested relational
data model (also known as an NF® data model) was introduced for
representing and manipulating complex and uncertain data in databases and
the extended algebra and the extended SQL-like query language were hereby
defined. Also physical data representation of the model and the core
operations that the model provides were also introduced in (Yazici et al.,
1999). It should be pointed out that, being the extension of relational data
model, NF? data model is able to handle complex-valued attributes and may
be better suited to some complex applications such as office automation
systems, information retrieval systems and expert database systems (Yazici
et al., 1999). But it is difficult for NF* data model to represent complex
relationships among objects and attributes. Some advanced abstracts in data
modeling (e.g., class hierarchy, inheritance, superclass/subclass, and
encapsulation) are not supported by NF* data model, which are needed by
many real applications. Therefore, in order to model uncertain data and
complex-valued attributes as well as complex relationships among objects,
current efforts have being focused on conceptual data models and object-
oriented databases (OODB) with imprecise and uncertain information.

Regarding modeling imprecise and uncertain information in object-
oriented databases, Zicari and Milano in (1990) first introduced incomplete

160 Chapter 9

information, namely, null values, where incomplete schema and incomplete
objects can be distinguished. From then on, the incorporation of imprecise
and uncertain information in object-oriented databases has increasingly
received the attentions, where fuzziness is witnessed at the levels of object
instances and class hierarchies. Based on similarity relationship, in (George
et al., 1996), the range of attribute values is used to represent the set of
allowed values for an attribute of a given class. Depending on the inclusion
of the actual attribute values of the given object into the range of the
attributes for the class, the membership degrees of an object to a class can be
calculated. The weak and strong class hierarchies were defined based on
monotone increase or decrease of the membership of a subclass in its
superclass. Based on the extension of a graphs-based model object model, a
fuzzy object-oriented data model was defined in (Bordogna, Pasi and
Lucarella, 1999). The notion of strength expressed by linguistic qualifiers
was proposed, which can be associated with the instance relationship as well
as an object with a class. Fuzzy classes and fuzzy class hierarchies were thus
modeled in the OODB. An UFO (uncertainty and fuzziness in an object-
oriented) databases model was proposed in (Gyseghem and de Caluwe,
1998) to model fuzziness and uncertainty by means of fuzzy set theory and
generalized fuzzy set, respectively. That the behaviour and structure of the
object are incompletely defined results in a gradual nature for the
instantiation of an object. The partial inheritance, conditional inheritance,
and multiple inheritances are permitted in fuzzy hierarchies. Based on
possibility theory, vagueness and uncertainty were represented in class
hierarchies in (Dubois, Prade and Rossazza, 1991), where the fuzzy ranges
of the subclass attributes defined restrictions on that of the superclass
attributes and then the degree of inclusion of a subclass in the superclass was
dependent on the inclusion between the fuzzy ranges of their attributes.
Based on the concept of the semantic proximity, an evaluated method of the
fuzzy association degree was given in semantic data models (Liu and Song,
2001). Recent efforts have been paid on the establishment of consistent
framework for a fuzzy object-oriented model based on the standard for the
Object Data Management Group (ODMG) object data model (Cross, de
Caluwe and Vangyseghem, 1997; Cross and Firat, 2000).

9.2 Fuzzy Objects and Fuzzy Classes

9.2.1 Fuzzy Objects

Objects model real world entities or abstract concepts. Objects have
properties that may be attributes of the object itself or relationships also

9. The Fuzzy Object-Oriented Databases 161

known as associations between the object and one or more other objects. An
object is fuzzy because of a lack of information. For example, an object
representing a part in preliminary design for certain will also be made of
stainless steel, moulded steel, or alloy steel (each of them may be connected
with a possibility, say, 0.7, 0.5 and 0.9, respectively). Formally, objects that
have at least one attribute whose value is a fuzzy set are fuzzy objects.

9.2.2 Fuzzy Classes

The objects having the same properties are gathered into classes that are
organized into hierarchies. Theoretically, a class can be considered from two
different viewpoints (Dubois, Prade and Rossazza, 1991):

(a) an extensional class, where the class is defined by the list of its object

instances, and

(b) an intensional class, where the class is defined by a set of attributes

and their admissible values.
In addition, a subclass defined from its superclass by means of inheritance
mechanism in the OODB can be seen as the special case of (b) above.

Therefore, a class is fuzzy because of the following several reasons. First,
some objects are fuzzy ones, which have similar properties. A class defined
by these objects may be fuzzy. These objects belong to the class with
membership degree of [0, 1]. Second, when a class is intensionally defined,
the domain of an attribute may be fuzzy and a fuzzy class is formed. For
example, a class Old equipment is a fuzzy one because the domain of its
attribute Using period is a set of fuzzy values such as long, very long, and
about 20 years. Third, the subclass produced by a fuzzy class by means of
specialization and the superclass produced by some classes (in which there is
at least one class who is fuzzy) by means of generalization are also fuzzy.

The main difference between fuzzy classes and crisp classes is that the
boundaries of fuzzy classes are imprecise. The imprecision in the class
boundaries is caused by the imprecision of the values in the attribute domain.
In the fuzzy OODB, classes are fuzzy because their attribute domains are
fuzzy. The issue that an object fuzzily belongs to a class occurs since a class
or an object is fuzzy. Similarly, a class is a subclass of another class with
membership degree of [0, 1] because of the class fuzziness. In the OODB,
the above-mentioned relationships are certain. Therefore, the evaluations of
fuzzy object-class relationships and fuzzy inheritance hierarchies are the
cores of information modeling in the fuzzy OODB. In the following
discussion, we assume that the fuzzy attribute values of fuzzy objects and the
fuzzy values in fuzzy attribute domains are represented by possibility
distribution.

162 Chapter 9
9.2.3 Fuzzy Object-Class Relationships

In the fuzzy QODB, the following four situations can be distinguished for
object-class relationships.

(a) Crisp class and crisp object. This situation is the same as the OODB,
where the object belongs or not to the class certainly. For example,
the objects Car and Computer are for a class Vehicle, respectively.

(b) Crisp class and fuzzy object. Although the class is precisely defined
and has the precise boundary, an object is fuzzy since its attribute
value(s) may be fuzzy. In this situation, the object may be related to
the class with the special degree in [0, 1]. For example, the object
which position attribute may be graduate, research assistant, or
research assistant professor, is for the class Faculty.

(c) Fuzzy class and crisp object. Being the same as the case in (b), the
object may belong to the class with the membership degree in [0, 1].
For example, a Ph.D. student is for Young student class.

(d) Fuzzy class and fuzzy object. In this situation, the object also belongs
to the class with the membership degree in [0, 1].

The object-class relationships in (b), (c) and (d) above are called fuzzy
object-class relationships. In fact, the situation in (a) can be seen the special
case of fuzzy object-class relationships, where the membership degree of the
object to the class is one. It is clear that estimating the membership of an
object to the class is crucial for fuzzy object-class relationship when classes
are instantiated.

In the OODB, determining if an object belongs to a class depends on if its
attribute values are respectively included in the corresponding attribute
domains of the class. Similarly, in order to calculate the membership degree
of an object to the class in a fuzzy object-class relationship, it is necessary to
evaluate the degrees that the attribute domains of the class include the
attribute values of the object. However, it should be noted that in a fuzzy
object-class relationship, only the inclusion degree of object values with
respect to the class domains is not accurate for the evaluation of membership
degree of an object to the class. The attributes play different role in the
definition and identification of a class (Liu and Song, 2001). Some may be
dominant and some not. Therefore, a weight w is assigned to each attribute
of the class according to its importance by designer. Then the membership
degree of an object to the class in a fuzzy object-class relationship should be
calculated using the inclusion degree of object values with respect to the
class domains, and the weight of attributes.

Let C be a class with attributes {A;, A2, ..., A}, o be an object on
attribute set {A, A2, ..., Ay}, and o (A)) denote the attribute value of 0 on A;
(1 €£i<n). In C, each attribute A; is connected with a domain denoted dom

9. The Fuzzy Object-Oriented Databases 163

(A)). The inclusion degree of o (A;) with respect to dom (A;) is denoted ID
(dom (A)), o (A))). In the following, we investigate the evaluation of ID (dom
(A), 0 (A)). As we know, dom (A)) is a set of crisp values in the OODB and
may be a set of fuzzy subsets in fuzzy databases. Therefore, in a uniform
OODB for crisp and fuzzy information modeling, dom (A;) should be the
union of these two components, dom (A;) = cdom (A;) U fdom (4A;), where
cdom (A;) and fdom (A;) respectively denote the sets of crisp values and
fuzzy subsets. On the other hand, o (A;) may be a crisp value or a fuzzy
value. The following cases can be identified for evaluating ID (dom (A)), o
(A)-

Case I: o (A)) is a fuzzy value. Let fdom (Ai) = {fi, fo, ..., fm}, Where £, (1
<j <m)is a fuzzy value, and cdom (A;)) = {c1, ¢a, ..., a1}, Where ¢; (1 £1<k)
is a crisp value. Then

ID (dom (A;), o (A))) = max (ID (cdom (A)), o (Ay)), ID (fdom (A)), o
(A))) = max (SID ({1.0/cy, 1.0/cs, ..., 1.0/ci}, o (A;)), max; (SID (f;, o
(AN,

where SID (x, y), as shown in Section 7.2, is used to calculate the degree that
fuzzy value x include fuzzy value y.
Case 2: 0 (A,) is a crisp value. Then

ID (dom (A)), 0 (A;)) =1 if 0 (A)) € cdom (A)
else
ID (dom (A)), o (A))) = 1D (fdom (A)), {1.0/0 (A)}).

Consider a fuzzy class Young students with attributes Age and Height,
and two objects ol and 02. Assume cdom (Age) = {5 — 20}, fdom (Age) =
{{1.0/20, 1.0/21, 0.7/22, 0.5/23}, {0.4/22, 0.6/23, 0.8/24, 1.0/25, 0.9/26,
0.8/27, 0.6/28}, {0.6/27, 0.8/28, 0.9/29, 1.0/30, 0.9/31, 0.6/32, 0.4/33,
0.2/34}}, and dom (Height) = cdom (Height) = [60, 210]. Let o1 (4ge) = 15,
02 (Age) = {0.6/25, 0.8/26, 1.0/27, 0.9/28, 0.7/29, 0.5/30, 0.3/31}, and 02
(Height) = 182. According to the definition above, we have
ID (dom (Age), o1 (Age)) =1,
ID (dom (Height), 02 (Height)) =1,
ID (cdom (Age), 02 (Age)) = SID ({1.0/5, 1.0/6, ..., 1.0/19, 1.0/20}, 02
(Age)) =0, and

ID (fdom (Age), 02 (Age)) = max (SID ({1.0/20, 1.0/21, 0.7/22, 0.5/23},
02 (Age)), SID {0.4/22, 0.6/23, 0.8/24, 1.0/25, 0.9/26, 0.8/27, 0.6/28},
02 (Age)), SID ({0.6/27, 0.8/28, 0.9/29, 1.0/30, 0.9/31, 0.6/32, 0.4/33,
0.2/34}, 02 (Age))) = max (0, 0.58, 0.60) = 0.60.

164 Chapter 9

Therefore,

ID (dom (Age), 02 (Age)) = max (ID (cdom (Age), 02 (Age)), 1D (fdom

(Age), 02 (Age))) = 0.60.

Now, we define the formula to calculate the membership degree of the
object o to the class C as follows, where w (A; (C)) denotes the weight of
attribute A, to class C.

> ID (dom (A,),0 (A))x w(A,(C))
e (0) o

z w(A(C))

Consider the fuzzy class Young students and object 02 above. Assume w
(Age (Young students)) = 0.9 and w (Height (Young students)) = 0.2. Then

IYoung students (02) = (0.9 x 0.6 + 0.2 x 1.0)/(0.9 + 0.2) = 0.67.

In the above-given determination that an object belongs to a class fuzzily,
it is assumed that the object and the class have the same attributes, namely,
class C is with attributes {A;, A2, ..., A,} and object o is on {A;, A2, ...,
A,} also. Such an object-class relationship is called direct object-class
relationship. As we know, there exist subclass/superclass relationships in the
OODB, where subclass inherits some attributes and methods of the
superclass, overrides some attributes and methods of the superclass, and
define some new attributes and methods. Any object belonging to the
subclass must belong to the superclass since a subclass is the specialization
of the superclass. So we have one kind of special object-class relationship:
the relationship between superclass and the object of subclass. Such an
object-class relationship is called indirect object-class relationship. Since the
object and the class in indirect object-class relationship have different
attributes, in the following, we present how to calculate the membership
degree of an object to the class in an indirect object-class relationship.

Let C be a class with attributes {A;, A2, ..., Ay, Axs1, ..., An} and o be
an object on attributes {A, A2, ..., Ay, A'x+t> -oo» A'm, Ansts --., An}. Here
attributes A’i1, ..., and A’ are overridden from Ay, ..., and A, and
attributes Aj.1, ..., and A, are special. Then we have

> ID(dom(A;),0(A;")xw(A,(C))
j=k

J=k+1

lw(Ai(C))

i[D (dom(A;),0(A))xw(A,(O)+
ue(0)= =

3

i

Based on the direct object-class relationship and the indirect object-class
relationship, now we focus on arbitrary object-class relationship. Let C be a

9. The Fuzzy Object-Oriented Databases 165

class with attributes {A;, A2, ..., A, A+, Amy Amsls ..., Ay} and o be an
object on attributes {A;, A2, ..., Ay, A’s1, ...s A'my Bmi, ..., By}, Here
attributes A’.y, ..., and A’ are overridden from Ay, ..., and A, or Ay,
..., and A, are overridden from A’y.q, ..., and A’,. Attributes A1, ..., and
A, and By, ..., B, are special in {A}, A2, ..., Ay, Aty ooy Amy Anets -oos
A,} and {A;, A2, ..., Ay, A’viis ooy A’y Brst, ..., By}, respectively. Then
we have

ﬁ‘,lD(dom(Ai),o(Ai))xw(Ai(C))+ i ID (dom(A;),0(A;")xw(A;(C))

Be (O) - i=1 J=k+1

éw(Ai«J»

Since an object may belong to a class with membership degree in [0, 1] in
fuzzy object-class relationship, it is possible that an object that is in a direct
object-class relationship and an indirect object-class relationship
simultaneously belongs to the subclass and superclass with different
membership degrees. This situation occurs in fuzzy inheritance hierarchies,
which will be investigated in next section. Also for two classes that do not
have subclass/superclass relationship, it is possible that an object may belong
to these two classes with different membership degrees simultaneously. This
situation only arises in fuzzy object-oriented databases. In the OODB, an
object may or may not belong to a given class definitely. If it belongs to a
given class, it can only belong to it uniquely (except for the case of
subclass/superclass).

The situation where an object belongs to different classes with different
membership degrees simultaneously in fuzzy object-class relationships is
called multiple membership of object in this paper. Now let us focus on how
to handle the multiple membership of object in fuzzy object-class
relationships. Let C1 and C2 be (fuzzy) classes and o be a given threshold.
Assume there exists an object o. If nc; (0) > o and e, (0) = o, the conflict
of the multiple membership of object occurs, namely, o belongs to multiple
classes simultaneously. At this moment, which one in C1 and C2 is the class
of object o dependents on the following cases.

Case I: There exists a direct object-class relationship between object o
and one class in C1 and C2.

Then the class in the direct object-class relationship is the class of object

0.

Case 2: There is no direct object-class relationship but only an indirect
object-class relationship between object 0 and one class in C1 and C2, say
C1. And there exists such subclass C'1’ of C1 that object 0 and C1” are in a
direct object-class relationship.

Then class C1° is the class of object o.

166 Chapter 9

Case 3: There is neither direct object-class relationship nor indirect
object-class relationship between object o and classes C1 and C2. Or there
exists only an indirect object-class relationship between object o and one
class in C1 and C2, say C1, but there is not such subclass C1’ of C1 that
object 0 and C1’ are in a direct object-class relationship.

Then class C1 is considered as the class of object o if pcy (0) > pc; (0),

else class C2 is considered as the class of object o.

It can be seen that in Case 1 and Case 2, the class in direct object-class
relationship s always the class of object o and the object and the class have
the same attributes. In Case 3, however, object 0 and the class that is
considered as the class of object o, say C1, have different attributes. It
should be pointed out that class C1 and object o are definitely defined,
respectively, viewed from their structures. For the situation in Case 3, the
attributes of C1 do not affect the attributes of o and the attributes of o do not
affect the attributes of C1 also. There should be a class C and C and o are in
direct object-class relationship. But class C is not available so far. That C1 is
considered as the class of object 0, compared with C2, only means that C1 is
more similar to C than C2. Class C is the class of object o once C is
available.

Consider three fuzzy classes C1 with {4, B}, C2 with {4, B, D}, and C3
with {4, F}. There exists a fuzzy object o on {4, B’, E}. Here, B’ is
overridden from B and D # E # F. According to the definitions above, we
have

(0)= ID (dom (A),0 (A)) x w(A(C1))+ ID (dom (B), 0 (B))x w(B (C1))
Berfo w(A4(CD)+w(B(C1) '

ID (dom (A), 0 (A))x w(A(C2))+ ID (dom (B), 0 (B')) x w (B (C2))

hey (0)= w(A(C2)+w(B(C2)+w(D(C2))
and
ID (dom (A), 0 () x w (A (C3))
Hes (0)= .
W (A(C3)) +w(F (C3))
Assume

w (A (Cl1) =w (4 (C2))=w(4(C3)),

w (B (C1))=w (B(C2)),
and

w (B (C2))+w (D (C2))=w (F(C3)).
Also assume Jic; (0) 2 o, Bea (0) 2 a, and pc; (0) = o, where o is a given
threshold. Then object o belongs to classes C1, C2 and C3 simultaneously.
The conflict of the multiple membership of object occurs. It can be seen that
the relationship between o and C1 is an indirect object-class relationship.
But the relationship between o and C2, which is the subclass of class C1, is

9. The Fuzzy Object-Oriented Databases 167

not a direct object-class relationship. So class C2 is not the class of object o.
It can also be seen that i) (0) = ey (0) = pes (0). So C1 is considered as the
class of object 0. But in fact, there should be a new class C with {4, B’, £},
which is the class in the direct object-class relationship of 0 and C. That pc
(0) 2 Yz (0) 2 pes (0) only means that C1 with {4, B} is more similar to C
with {4, B’, E} than C2 with {4, B, E} and C3 with {4, F}. When class C is
not available right now, class C1 is considered as the class of object o.

9.3 Fuzzy Inheritance Hierarchies

In the OODB, a new class, called subclass, is produced from another
class, called superclass by means of inheriting some attributes and methods
of the superclass, overriding some attributes and methods of the superclass,
and defining some new attributes and methods. Since a subclass is the
specialization of the superclass, any one object belonging to the subclass
must belong to the superclass. This characteristic can be used to determine if
two classes have subclass/superclass relationship.

In the fuzzy OODB, however, classes may be fuzzy. A class produced
from a fuzzy class must be fuzzy. If the former is still called subclass and the
later superclass, the subclass/superclass relationship is fuzzy. In other words,
a class is a subclass of another class with membership degree of [0, 1] at this
moment. Correspondingly, the method used in the OODB for determination
of subclass/superclass relationship is modified as

(a) for any (fuzzy) object, if the member degree that it belongs to the

subclass is less than or equal to the member degree that it belongs to
the superclass, and

(b) the member degree that it belongs to the subclass is great than or

equal to the given threshold.
The subclass is then a subclass of the superclass with the membership
degree, which is the minimum in the membership degrees to which these
objects belong to the subclass.

Let C1 and C2 be (fuzzy) classes and 3 be a given threshold. We say C2
is a subclass of C1 if

(Vo) (B < pc2 (0) < pei (0)).

The membership degree that C2 is a subclass of C1 should be min,c; (o) » p
(Hc2 (0)).

It can be seen that by utilizing the inclusion degree of objects to the class,
we can assess fuzzy subclass/superclass relationships in the fuzzy OODB. It
is clear that such assessment is indirect. If there is no any object available,
this method is not used. In fact, the idea used in evaluating the membership

168 Chapter 9

degree of an object to a class can be used to determine the relationships
between fuzzy subclass and superclass. We can calculate the inclusion
degree of a (fuzzy) subclass with respect to the (fuzzy) superclass according
to the inclusion degree of the attribute domains of the subclass with respect
to the attribute domains of the superclass as well as the weight of attributes.
In the following, we give the method for evaluating the inclusion degree of
fuzzy attribute domains.

Let C1 and C2 be (fuzzy) classes with attributes {A;, A2, ..., A, A,
<o An} and {Ag, A2, .. A Aty oo Ay At -5 Ay, Tespectively. It
can be seen that in C2, attributes A;, A2, ..., and Ay are directly inherited
from A;, A2, ..., and Ay in C1, attributes A’y,, ..., and A’ are overridden
from Ay, ..., and Ay, in C1, and attributes Ay, ..., and A, are special. For
each attribute in C1 or C2, say A, there is a domain, denoted dom (A;). As
shown above, dom (A;) should be dom (A;) = cdom (A;) U fdom (A;), where
cdom (A;) and fdom (A;) denote the sets of crisp values and fuzzy subsets,
respectively. Let A; and A; be attributes of C1 and C2, respectively. The
inclusion degree of dom (A;) with respect to dom (A;) is denoted by ID (dom
(Ay), dom (A))). Then we identify the following cases and investigate the
evaluation of ID (dom (A;), dom (A))):

(a) wheni=jand 1<i,j<k, ID (dom (Aj), dom (A;)) = 0,

(b) wheni=jand 1 <i, j <k, ID (dom (A;), dom (A})) =1, and

(c) wheni=jand k + 1 <i,j <m, ID (dom (A)), dom (A;)) = ID (dom

(A), dom (A%)) = max (ID (dom (A)), cdom (A%)), ID (dom (A)),
Jdom (A*))).

Now we respectively define ID (dom (A;), cdom (A’)) and ID (dom (A)),
Sdom (A’). Let fdom (A’) = {fi, f5, ..., Jm}, Where f; (1 < j <m) is a fuzzy
value, and cdom (A’)) = {cy, ¢a, ..., ¢k}, Where ¢ (1 <1<Kk) is a crisp value.
We can consider {ci, ¢, ..., ¢k} as a special fuzzy value {1.0/c;, 1.0/c,, ...,
1.0/c}. Then we have the following, which can be calculated by using the
definition in Case 1 of Section 9.2.3.

ID (dom (A)), cdom (A’)) = ID (dom (A)), {1.0/cy, 1.0/cs, ..., 1.0/c})

ID (dom (A), fdom (A’;)) = max; (ID (dom (Aj), f;))

Based on the inclusion degree of attribute domains of the subclass with
respect to the attribute domains of its superclass as well as the weight of
attributes, we can define the formula to calculate the degree to which a fuzzy
class is a subclass of another fuzzy class. Let C1 and C2 be (fuzzy) classes
with attributes {A;, A2, ..., Ay, Ax+1, ..., An} and {A, A2, ..., A, A'kets -nos
A’y A, ..., Anl}, respectively, and w (A) denote the weight of attribute A.

9. The Fuzzy Object-Oriented Databases 169

Then the degree that C2 is the subclass of C1, written u (C1, C2), is defined
as follows.

S ID (dom (A, (C1)), dom (A (C2)))x w(A,)
n(C1,C2)="=t

_'"§]w<A,->

In subclass-superclass hierarchies, a critical issue is multiple inheritance
of class. Ambiguity arises when more than one of the superclasses have
common attributes and the subclass does not declare explicitly the class from
which the attribute was inherited.

Let class C be a subclass of classes C1 and C2. Assume that the attribute
A; in C1, denoted by A; (C1), is common to the attribute A; in C2, denoted
by A; (C2). If dom (A; (C1)) and dom (A; (C2)) are identical, there does not
exist a conflict in the multiple inheritance hierarchy and C inherits attribute
A, directly. If dom (A; (C1)) and dom (A; (C2)) are not identical, however,
the conflict occurs. At this moment, which one in A; (C1)) and A; (C2) is
inherited by C dependents on the following rule:

If ID (dom (4; (C1)), dom (4; (C2))) xw (4; (C1)) > ID (dom (4, (C2)),
dom (4; (C1))) xw (4; (C2)), then A, (Cl) is inherited by C, else A; (C2)
is inherited by C.

Note that in fuzzy multiple inheritance hierarchy, the subclass has
different degrees with respect to different superclasses, not being the same as
the situation in classical object-oriented database systems.

9.4 Flexible Constraints

Types and constraints are the basic building blocks of object-oriented
database model. Here constraints are used for the definition of the semantics
and integrity of the data and for the definition of query criteria (de Tre and
de Caluwe, 2005). The classical view of constraints is the notion of
imperative, all-or-nothing conditions. In this view, constraints serve as
discriminators between alternatives that must be rejected and alternatives
worthy of full consideration. In this view, a constraint cannot be violated and
“cannot be compensated by the satisfaction of another constraint” (Dubois,
Fargier and Prade, 1996). So over-constrained problem is inherent in
classical constraint satisfaction problem (CSP). In order to overcome the
shortage of classical constraints, more recently, flexible constraints are

170 Chapter 9

extensively studied and have become attractive in Al (Miguel and Shen,
2001).

Constraints have been one of the basic building blocks of object schemas.
The identification and comparison of the semantic relationship of constraints
are crucial in the object-oriented databases. As the result of the identification
and comparison of the semantic relationship of constraints, the operations on
constraints are needed. Although flexible constraints receive increasing
interest, most work focuses on the joint satisfaction of constraints (Ruttkay,
1994). Little research has been done in comparison and operations of
flexible constraints. Few operations were defined in (Dubois, Fargier and
Prade, 1996). But they are incomplete. In particular, semantic relationships
between flexible constraints are not considered when these operations are
defined.

94.1 Constraints and Classification

A traditional (hard) constraint relates to a set of decision variables {X;,
X, ..., Xa}, which domains are Dy, Dy, ..., and D,, respectively. Then it is
classically described by an associated relation R defined as follows.

RcDyxDyx...xD,

Here, R is the crisp subset of Cartesian product of Dy, Dy, ..., and D,. The
tuples with the form d = (d;, d, ..., d)) € R are compatible with the
constraint. Formally, constraint Cxix».x, 1S represented by

Ryxix2..xa 01 Re.

An alternative d satisfying constraint C is hereby expressed by Rxixz. xa (d)
or Rc (d). The set {X,, X», ..., X,} of variable related by R is denoted by V
(R).

Traditional constraints are qualified as “hard constraints” to distinguish
them from their counterparts: flexible constraints.

Fuzzy Constraints

Dubois, Fargier and Prade (1996) use the notion of soft constraint. In
their terminology, whereas hard constraints divide the solution space into
feasible and non-feasible, soft constraints divide the space into three sub-
spaces, non-feasible, somewhat feasible, and feasible. This subdivision is
captured by a membership degree function ¢ associated with constraint C.
The function pirc takes the value 1 in the feasible space, 0 in the non-feasible
space and a value between 0 and 1 in the somewhat-feasible space. Dubois,
Fargier and Prade (1996) note that soft constraints are a combination of a

9. The Fuzzy Object-Oriented Databases 171

hard constraint (defining the non-feasible space) and a preference criterion
(ranking the somewhat-feasible and feasible solutions).

Prioritized Constraints

In an ideal situation, all constraints must be met. In practice, it is often
the case that violating different constraints does not carry the same
consequences. Not all constraints have the same level of criticality. Dubois,
Fargier and Prade (1996) capture the level of criticality of constraints
through a numeric priority level pcassociated with constraint C. The priority
level expresses the degree of necessity of constraint C. A crisp (non-soft)
constraint C with a degree of necessity pc is represented by a fuzzy
constraint C" characterized as follows:

e, (@ =Tif pp (d)=1

b, (@=1=peif e (d)=0

When C is a soft constraint with membership degree function prc and
priority level pc, it is modeled by the fuzzy constraint C* characterized by:

.. (@)=max (1~ pc, iy, ().

Using the two concepts of fuzziness and prioritization, a variety of other
concepts can be captured. Dubois, Fargier and Prade (1996), for example,
use them to capture the concept of guards (constraints that must be satisfied
up to some threshold level, no matter how low the priority), and the concept
of hierarchical constraints (constraints that are only relevant if some other
constraints are met/violated).

Fuzzy (soft) constraints and prioritized constraints are called flexible
constraints in the paper. Since prioritized constraints are modeled by fuzzy
constraints, the notion of flexible constraints here only refers to soft (fuzzy)
constraints. Of course, classical (hard) constraints can be viewed as the
special case of flexible constraints. In the following, we give the formal
definition of flexible constraints.

Definition (flexible constraint): A flexible constraint C relates to a set of
decision variables {X;, X,, ..., X,}, which domains are D;, D,, ..., and D,
respectively, and is described by an associated fuzzy relation R that is the
fuzzy subset of Cartesian product of Dy, D,, ..., and D,. Formally, flexible
constraint FCyxx,. xn is represented by Ryix2. xn or Rc. Each instantiation
with the form d =(d,, @5, ..., d,)€R is connected with a membership degree,

denoted g (d) (0 < pre (d) < 1).

172 Chapter 9
9.4.2 Flexible Constraint Comparison

Since a flexible constraint is represented by a fuzzy relation, the semantic
relationship between flexible constraints turns out to be the relationship
between fuzzy relations. It should be pointed out that, however, the
distributed knowledge may result in syntactic and semantic conflicts among
flexible constraints, which affect the identification and determination of the
relationships between flexible constraints. The issues about conflicts and
solutions of flexible constraints will be discussed in other paper. Here we
assume that all possible conflicts are identified and solved.

Let FC1 and FC2 be two flexible constraints represented by fuzzy
relations Rpcy and Rrcp, respectively. Assume that V (Rpct) = V (Rec2) = {X4,
X3, ..., X,}, each ranging on its respective domain D;, D,, ..., and D,.
Basically, equivalence relationship and inclusion relationship of flexible
constraints have been identified (Dubois, Fargier and Prade, 1996).

Definition (equivalence relationship): Let Rgc; and Rec; be the same as
the above. We say Rgc; and Ryc, are equivalent to each other, denoted Ry =
Rrco, if

A4 (dl, dz, cees dn) € D] X D2 X ..., X Dn., uRFC] (d], dz, ceey dn): uRFCZ (dl,
d, ..., dy).

Definition (inclusion relationship): Let Rrc; and Rpc, be the same as the
above. We say Rc includes Rgcy, denoted Reci 2 Rreo, if

\vd (dl, dz, . dn) S D] X D2 X .o, X Dn., },LRFCI (d], dz, . dn) > uRFCz (d],
dy, ..., o).

A A

MRFCI “RFcz MRFC' lJ'RFC2

Rec1 = Reca Rpc1 2 Rpes

0 p 0
d=(d dy, ..., dp) d=(dy, dy, ..., dy)

Figure 9-1. Equivalence and Inclusion Relationships of the Flexible Constraints

In (Mili, 2000), the situation Rpc; D Rec is called as “Rgc; is more
defined than Rgc,”. It is clear that semantic equivalence is a particular case of

9. The Fuzzy Object-Oriented Databases 173

semantic inclusion: if Recy D Rres and Rpcy C© Ryca, then Recy = Rpcy. Figure
9-1 shows the semantic relationships above.

It should be pointed out that, however, Rrc; = Rrca or Ry 2 Rrcoy (Rrc1 ©
Rrcy) is essentially the special case of semantic relationship. Generally
speaking, the semantic relationship of flexible constraints should be fuzzy
also since the constraints are flexible. In order to assess the semantic
relationship of flexible constraints quantitatively, we introduce the notion of
semantic inclusion degree.

Definition (semantic inclusion degree): Let Rec; and Rgc; be the same as
the above. The degree that Rgpc; semantically includes Rpc,, denoted SID
(Rrc1, Rrc), is defined as follows.

SID (Rrc1, Reca) =
Ymin (g, (d1,d2,....dn), pup (d1,d2,....dn)) /3 pp (d1,d2,..., dn))

It can bee seen that the meaning of SID (Rgcy, Rrcy) is the percentage of
the solutions of Rpc, that are wholly included in the solutions of Rpcy.
Following this definition, the notion of semantic equivalence degree can be
easily drawn as follows.

Definition (semantic equivalence degree): Let Rpc; and Ry be two
flexible constraints and SID (Rrc, Rrc) be the degree that Rrc, semantically
includes Rgcy. Let SED (Rpcy, Rrcz) denote the degree that Rpcy and Rpc, are
equivalent to each other. Then,

SED (Rrc1, Rrc2) = min (SID (Rgci, Rrcz), SID (Reco, Rrci))

Using the notions of semantic inclusion degree and semantic equivalence
degree, the semantic relationship between flexible constraints can be
assessed quantitatively. If a threshold is given, we can get approximate
equivalence relationship and approximate inclusion relationship.

Definition: Let Rpci and Rye; be two flexible constraints and o be a given
threshold. Then if SED (Rgci1, Rrc2) = o, we say Rrc; and Rpc, are equivalent
to each other, denoted Rpc; ~¢ Rpcz. If SID (Rpci, Recz) 2 o, we say Ryc
includes RFCZ; denoted RFC] Sa RFCZ or RFC2 Co RFCI .

Example. Consider three flexible constraints represented by fuzzy
relations Rgc|, Rrcz, and Rgcs, respectively, shown in Figure 9-2,

Then,
SID (Rect, Rrc2)=(0.6 +0.8+ 0.9 +0.7 +0.5)/(0.6 + 0.8 + 0.9 +0.7 +

0.5)=1.0
SID (Rrc2, Recr) = (0.6 + 0.8 + 0.9 +0.7 + 0.5)/(0.6 + 0.8 + 0.9 +0.7 +
0.5)=1.0

and thus

174 Chapter 9

SED (Rgc1, Recz) = min (SID (Rgc1, Rrc2), SID (Reca, Rec1)) = 1.0

Rec Recy Rrcs
X Y) X Y n X Y i
2 3 0.6 2 3 0.6 4 5 0.7
4 5 0.8 4 5 0.8 6 7 0.9
6 7 0.9 6 7 0.9 8 9 0.6
8 9 0.7 8 9 0.7
10 11 0.5 10 11 0.5

Figure 9-2. Three Flexible Constraints Represented by Fuzzy Relations

Similarly,
SID (Rgc1, Rrc3) = (0.7 + 0.9 +0.6)/(0.7 + 0.9 +0.6) = 1.0
SID (Rec3, Rrcr) = (0.7 + 0.9 +0.6)/(0.6 + 0.8 + 0.9 +0.7 + 0.5) = 2.2/3.5
=0.629
and thus
SED (Rec1, Recs) = min (SID (Rgci, Rrcs), SID (Rres, Recr)) = 0.57
It is clear that Rec; and Ry, are equivalent to each other and Rgc; includes
Rgcs.
Example. Consider two flexible constraints represented by fuzzy relations
Rrcs and Rycs, respectively, shown in Figure 9-3. Let a = 0.75 be the given
threshold.

Rrcs Rees
X Y u X Y u
4 5 0.7 10 11 04
6 7 0.8 2 13 06
8 9 0.9 14 15 09
10 11 0.6 16 17 0.7
12 13 03

Figure 9-3. Two Flexible Constraints Represented by Fuzzy Relations

Then,
SID (Rec1, Reca) = (0.7 + 0.8 + 0.7 +0.5)/(0.7 + 0.8 + 0.9 +0.6 + 0.3) =
2.7/3.3=0.82
SID (Recs, Rec1) = (0.7 + 0.8 + 0.7 +0.5)/(0.6 + 0.8 + 0.9 +0.7 + 0.5) =
2.7/3.5=0.77

and thus
SED (Rec1, Recs) = min (SID (Reci, Recs), SID (Rpcs, Reci)) = 0.77

9. The Fuzzy Object-Oriented Databases 175

Similarly,
SID (Rrc4, Recs) = (0.3 +0.4)/(0.4+ 0.6 +0.9 +0.7) = 0.7/2.6 = 0.269
SID (Rgcs, Rrca) =(0.3 +0.4)/(0.7+0.8+0.9+0.6 +03)=0.7/3.3 =
0.212
and thus
SED (Rgc4, Recs) = min (SID (Rpcs, Recs), SID (Recs, Recs)) = 0.212
It is clear that Rgc; and Rpcy can be viewed as be equivalent to each other
under the given threshold. That implies that Rrc; semantically includes Rpcy
and Rgcy semantically includes Rgc) simultaneously. However, neither Rpcy
semantically includes Rgcs nor Rpcs semantically includes Rpcy under the
given threshold. Therefore, Rrcs and Rycs are not equivalent to each other.

9.4.3 Operations on Flexible Constraints

Flexible constraints are represented by fuzzy relations. So the operations
on flexible constraints turn out to be the operations on fuzzy relations. In the
following, some operations on fuzzy relations are defined, which may be
used in flexible constraint satisfaction problem (FCSP) or distributed
knowledge integration.

Projection. Let R be a fuzzy relation and V (R) = {X,, X, ..., Xy}. The
projection of R on decision variable subset {X;, ..., Xj} < V (R) is a fuzzy
relation on {Xi, ..., Xj}, denoted RU{Xi, ..., Xj}. It is clear that V (RV{X,,
o Xi3) = {Xi, ..., Xj}. The membership function of RUX, ..., Xj} is
defined as follows.

Habex, ., xiy (is oo d) = maxpy - onaa | anyiai,...qy (MR (d1; day ., dn))

R RUX, 7}
X Y 7z n X Y u
4 5 2 0.7 4 2 08
4 7 2 0.8 6 4 09
6 S 4 0.9 8 6 03
6 7 4 0.6
8 5 6 0.3

Figure 9-4. Projection Operation on the Flexible Constraint

,,,,, xiy (dy, da, ..., dy) denotes the classical projection of (d, ds, ...,
dy) to {X, ..., Xj}.

176 Chapter 9

Example. Consider a flexible constraint represented by fuzzy relation R
shown in Figure 9-4. In light of the definition of projection of fuzzy relation
above, we obtain the following fuzzy relation RV {X, Z}.

Cylindrical Extension. Let R be the same as the above. The cylindrical
extension of R to decision variable set {X;, ..., X;} 2 V (R) is a fuzzy
relation on {X, ..., Xj}, denoted RT{Xi, ..., Xj}. It is clear that V (RT{X,-,
v Xi}) = {Xi, ..., Xj}. The membership function of RT{X;, ..., Xj} is
defined as follows.

Hrtex, ... xjy (dis - di) = pe (d, da, ..., dy) Ty gy (i) =(d 1. d2,....d)
Here Ilvy @) (d;, ..., d;) denotes the classical projection of (d;, ..., d;)) to V (R).

Selection. Let R be the same as the above. The selection of R is to choose
some instances from the fuzzy relation. The chosen instances meet the given
condition represented by a predicate. A predicate is formed through
combining the basic clause X 0 Y as operands with operators —, A, and v.
Here, X € V (R) is a decision variable, Y is either decision variable or a
literal, and 6 € {>, <, =, #, >, <, between, not between, in, not in, like, not
like}. In order to implement flexibility to selection, first X is allowed to be
the variable denoting the membership degree of instances. Such a selection
may be “selecting the instances which membership degrees are greater than
0.95”. Second, X 8'Y is allowed to be imprecise. That means that Y may be
a fuzzy term such as (very) big or 6 may be a fuzzy relation such as (very)
close to. When X 0 Y is imprecise, a threshold must be given to evaluate the
imprecise condition (Chen and Jong, 1997; Ma and Mili, 2002).

Let P, be a predicate representing flexible selection condition. Then the
selection on R for P,is defined as follows.

opr(R)={t|t € RAPf (1)}

Combination. Let R1 and R2 be two fuzzy relations. The combination of
R1 and R2 is to construct a fuzzy relation R. For this purpose, the following
cases can be identified.

Case 1: R1 ~, R2.

Here o is the given threshold. Since R1 and R2 are semantically
equivalent to each other, R = R1 (or R = R2) such that pp (d) = pg; (d) (or pg
(d) = pr2 (d)).

Case 2: V (R1) =V (R2) and R1 4, R2.

Here a is the given threshold. We have three strategies for constructing R
under this situation, which are union operation, intersection operation, and
different operation, respectively.

9. The Fuzzy Object-Oriented Databases 177

The union of two fuzzy relations R1 and R2 is a fuzzy relation R = R1 v
R2 over V (R1)/V (R2) = {X|, Xy, ..., Xy} such that

pr(dy, da, oo dn) = ppiore (dr, do, -, d,) = max (Wr1 (dy, do, ..., do), B2
(dy, dy, ..., dy)).

In particular, R=R1 and Hr1 UR2 (d], dz, Ceay dn) = Ur1 (d], d2, ceey dn) if R1 Sa
R2.If R1 Co R2, R=R2 and Hr1uR2 (d[, dz, veey dn) = Ur2 (d], dz, P dn)

The intersection of two fuzzy relations R1 and R2 is a fuzzy relation R =
R1 m R2 over V (R1)/V (R2) = {X, X,, ..., Xy} such that

e (di, do, ...y dp) = Hr1 A r2 (d1, dy, ..., dy) = min (1w (dy, dy, ..., dy), Hr2
(dla dZa [dﬂ))

In particular, R=R2 and HR1 A R2 (d], dz, cees dn) = U2 (d], dz, vaay dn) if R1 2o
R2.IfR1 Co R2, R=RI and Wr1AR2 (d], dz, SN dn) = WUr1 (d], dz, Ceey dn)

The difference of two fuzzy relations R1 and R2 is a fuzzy relation R =
R1 — R2 over V (R1)/V (R2) = {X,, X5, ..., Xy} such that

LR (d, dy, ..., dp) = Mri -2 (di, do, ..., dp) = min (Ug (di, dy, ..., dy) — Hr2
(dls d29 [ERTY dn): O)

Example. Consider two flexible constraints represented by the fuzzy
relations Rpcq and R pcs shown in Figure 9-3. It has been shown that neither
Rrcs semantically includes Rgpcs nor Rgcs semantically includes Rgcq under
the given threshold o = 0.75. Then we have the fuzzy relations shown in
Figure 9-5.

Rreq Rrcs Rrcs — Rrcs
X M X Y u
4 5 0.7 4 5 0.7
6 7 0.8 6 7 0.8
8 9 0.9 8 9 0.9
10 11 0.6 10 11 0.2
12 13 0.6
14 15 0.9
16 17 0.7

Figure 9-5. The Union and Difference Operations on the Flexible Constraints

Case 3:V(R)zV (R2)and V (R1)NV (R2) = ©.
We have two strategies for constructing R under this situation, which are
join (conjunctive combination) operation and disjunctive combination

178 Chapter 9

operation, respectively. Then the join of two fuzzy relations Rl and R2 is a
fuzzy relation R=R1 ® R2 over V (R1) U V (R2) = {X,, ..., X|} such that

e (ds, ..., d) = Hrie 2 (dis ..., &) = min (Wzy [y @1y (dis <., d))), peo [y
® (d, ..., d)))

The disjunctive combination of two fuzzy relations R1 and R2 is a fuzzy
relation R=R1 @ R2 over V (R1) U V (R2) = {X,, ..., X} such that

25 s ..., dj) = HrtoRrR2 (di, ..., dj) = max (pg (Iy (R1) i ..., dj)), 25:9)
Iy (R2) d; ..., d))).

Case 4:V (R1) 'V (R2)= .

To construct R under this situation, we use Cartesian product operation.
The Cartesian product of two fuzzy relations R1 and R2 is a fuzzy relation R
=Rl xR2 over V (R1) U V (R2) = {X,, ..., X;} such that

pr (di .., &) = Heixr2 (dis -y d§) = prr Ty vy (ds, .., d5)) X pge Ty R2)
(di’ LR dj))

Example. Consider three flexible constraints represented by fuzzy
relations Ry, R,, and Rs, respectively, shown in Figure 9-6.

Rl RZ R3
A X il B X i C Y 0
2 3 0.6 12 3 0.6 24 5 0.7
4 5 0.8 14 7 0.8 26 7 0.9
6 7 0.9 16 9 0.9

Figure 9-6. Three Flexible Constraints for Combination Operation

RI®R, R OR,
A B X p A B X
4 12 5 06 4 12 5 08
6 14 7 08 6 14 7 09

Figure 9-7. Conjunctive and Disjunctive Combination Operations on the Flexible Constraints

It can be seen that V (R1) # V (R2) and V (R1) © V (R2) # ®. Following the
definition in Case 3, we have the fuzzy relations shown in Figure 9-7. But V

9. The Fuzzy Object-Oriented Databases 179

RNV (R3) =D and V (R2) "V (R3) = ®. Following the definition in
Case 4, we have the fuzzy relations shown in Figure 9-8.

Ry x Ry R, x Ry

A C X Y n B cC X Y n

2 24 3 5 0.42 12 24 5 5 0.42
2 26 3 7 0.54 12 26 5 7 0.54
4 24 5 5 0.56 14 24 7 5 0.56
4 26 5 7 0.72 14 26 7 7 0.72
6 24 7 5 0.63 16 24 9 5 0.63
6 26 7 7 0.81 16 26 9 7 0.81

Figure 9-8. Cartesian Product Operation on the Flexible Constraints

9.5 The Fuzzy Object-Oriented Model

Based on the discussion above, we have known that the classes in the
fuzzy OODB may be fuzzy. Accordingly, in the fuzzy OODB, an object
belongs to a class with a membership degree of [0, 1] and a class is the
subclass of another class with degree of [0, 1] also. In the OODB, the
specification of a class includes the definition of IS4 relationships, attributes,
method implementations and constraints. In order to specify a fuzzy class,
some additional definitions are needed. First, the weights of attributes to the
class must be given. In addition to these common attributes, a new attribute
should be added into the class to indicate the membership degree to which an
object belongs to the class. If the class is a fuzzy subclass, its superclasses
and the degree that the class is the subclass of the superclass should be
illustrated in the specification of the class. Finally, in the definition of a
fuzzy class, fuzzy attributes may explicitly be indicated.

Formally, the definition of a fuzzy class is shown as follows.

CLASS class name WITH DEGREE OF degree

INHERITS superclass_1 name WITH DEGREE OF degree_1

INHERITS superclass_k name WITH DEGREE OF degree_k
ATTRIBUTES
Attribute_1 name: [FUZZY] DOMAIN dom_1: TYPE OF type_1 WITH
DEGREE OF degree_1

Attribute_m name: [FUZZY] DOMAIN dom_m: TYPE OF type_m WITH
DEGREE OF degree_m
Membership_Attribute name: membership_degree

180 Chapter 9

WEIGHT
w (Attribute_1 name) = w_1

w (Aftribute_m name) = w_m
METHODS

CONSTRAINTS

END

For non-fuzzy attributes, the data types include simple types such as
integer, real, Boolean, string, and complex types such as set type and object
type. For fuzzy attributes, however, the data types are fuzzy type based
simple types or complex types, which allows the representation of
descriptive form of imprecise information. Only fuzzy attributes have fuzzy
type and fuzzy attributes are explicitly indicated in a class definition.
Therefore, in the definition above, we declare only the base type (e.g.,
integer) of fuzzy attributes and the fuzzy domain. A fuzzy domain is a set of
possibility distributions or fuzzy linguistic terms (each fuzzy term is
associated with a membership function). For example, a fuzzy attribute Age
is declared as follows.

Age: FUZZY DOMAIN {very young, young, old, very old}: TYPE OF
integer

Then an object attribute defined fuzzy type will have either a crisp value or a
fuzzy value given in the type definition. For example, Age = 21 or Age =

young.
9.6 Query and Operations

The change in database model impacts the operations on the database
model (Ma and Mili, 2002). In the following, we describe some operations
based on the proposed fuzzy class model above. First, we briefly discuss
several combination operations of the fuzzy classes. Finally, we investigate
the issue of user request-queries based on the fuzzy classes. Depending on
the relationships between the attribute sets of the combining classes, three
kinds of combination operations can be identified: fuzzy product (X), fuzzy
Jjoin (), and fuzzy union (O). Let C1 and C2 be (fuzzy) classes and let Attr
(C1) and Attr (C2) be their attribute sets, respectively. Assume a new class C
is created by combining C1 and C2. Then

C=Cl1 % C2,if At (C1) " Attr (C2) = @,

9. The Fuzzy Object-Oriented Databases 181

C=C1 < C2, if Attr’ (C1) A Attr’ (C2) = ® and At (C1) = Autr (C2),

or
C=C1 O C2, if At (C1) = Attr’ (C2).

Here, Attr’ (C1) and Ay’ (C2) are obtained from Aetr (C1) and Artr (C2)
through removing the membership degree attributes from Artr (C1) and A#tr
(C2), respectively. In the following, ¢ is used to represent the membership
degree attribute of C. Assume we have an object o of C. Then p (0) is used
to represent the value of o on . For a common attribute in C, say Ai, o (4i)
is used to represent the value of o on 4i. If we have a set of such common
attributes, say {4i, 4j, ..., Am}, o ({4i, 4j, ..., Am}) is used to represent all
values of o on the attributes in {4i, 4/, ..., Am}. Furthermore, o (C) is used
to represent all values of o on the common attributes in C. In the following,
we give the formal definitions of fuzzy product, fuzzy join, and fuzzy union
operations.

9.6.1 Fuzzy Product

The fuzzy product of C1 and C2 is a new class C, which is composed
with the common attributes of C1 and C2 as well as a membership degree
attribute. The objects of C are created by the composition of objects from C1
and C2.

C=ClXC2={(Vo) (Vo) (0 e Cl A0” € C2 Ao (Attr’ (C1))=
0’ (C1) Ao (Attr’ (C2)) =07 (C2) A pic (0) = op (e (07), pez (07N}

Here, operation op is undefined. Generally, op (uc; (0°), pe2 (07)) may be
min (uer (0), Koz (07)) or fey (07) X Hez (07).

9.6.2 Fuzzy Join

The fuzzy join of C1 and C2 is a new class C, where Attr’ (C1) N Attr’
(C2) # ® and A’ (C1) # Attr’ (C2). Class C is composed with 4217 (C1) v
A’ (C2) — (Atr’ (C1) N Artr® (C2))) as well as a membership degree
attribute. The objects of C are created by the composition of objects from C1
and C2, which are semantically equivalent on A#tr” (C1) n A#r’ (C2) under
the given thresholds. It should be noted that, however, Attr’ (C1) N Ay’
(C2) # @ implies C1 and C2 have the same weights of attributes for the
attributes in Attr’ (C1) m Attr’ (C2). This is an additional requirement to be

182 Chapter 9

met in the case of the fuzzy join operation. Let o be the given threshold.
Then

C=Cl p7C2={0(30°) (3 0”) (0’ € Cl A0” € C2 ASE (0’ (Attr’ (C1)
A At (C2)), 07 (Attr (C1) A Attr’ (C2))) > o A o (Attr (C1)) = 0’
(C1) A o (Attr (C2) — (Attr’ (C1) A Attr’ (C2))) = 0” (Attr (C2) —
(Arr’ (C1) Attr’ (C2))) A Ke (0) = op (i (07), ez (07)))}

Here, operation op is also undefined. Generally, op (L¢; (07), Ucz (07)) may
be min (uci (0°), ez (07)) or per (07) X Pz (07).

9.6.3 Fuzzy Union

The fuzzy union of C1 and C2 requires Artr’ (C1) = Awtr’ (C2), which
implies that all corresponding attributes in C1 and C2 have the same
weights. Let a new class C be the fuzzy union of C1 and C2. Then the
objects of C are composed of three kinds of objects. The first two kinds of
objects are such objects that directly come from one component class (e.g.,
C1) and are not redundant with any object in another component class (e.g.,
C2) under the given thresholds. The last kind of objects is such objects that
are the results of merging the redundant objects from two component classes
under the given thresholds. Let a be the given threshold.

C=Cl O C2=C={0o[(V0”)(0” € C2r0e ClASE(0(Cl),0”
C)<a)v(Vo) (0 eClaoe C2ASE(0(C2),0’ (Cl))<a)v
(Fo)@ o) (0 eClAro”e C2ASE(0° (C1),0” (C2)>ano=
merge (0, 0™))}

Here, merge is an operation for merging two redundant objects of the class
to form a new object of the class. Let 0’ and 0” be two objects of class C and
o =merge (0°, 0”). Then o (C) =0’ (C) or 0 (C) = 0” (C) and p (0) = max
(Her (07), Kz (07)).

9.6.4 Fuzzy Query

Query processing refers to such procedure that the objects satisfying a
given condition are selected and then they are delivered to the user according
to the required formats. These format requirements include which attributes
appear in the result and if the result is grouped and ordered over the given
attribute(s). So a query can be seen as comprising two components, namely,
a boolean selection condition and some format requirements. For the sake of
the simple illustration, some format requirements are ignored in the

9. The Fuzzy Object-Oriented Databases 183

following discussion. An SQL (Structured Query Language) like query
syntax is represented as

SELECT <attribute list> FROM <class names> WHERFE <query
condition>,

where <attribute list> is the list of attributes separated by commas:
Attribute;, Attribute,, ..., Attribute,. At least one attribute name must be
specified in <atfribute list>. Attributes that take place in <attribute list> are
selected from the associated classes which are specified in the FROM
statement. <class names> contains the class names separated by commas:
Class,, Class,, ..., Class,, from which the attributes are selected with the
SELECT statement.

Classical databases suffer from a lack of flexibility to query. The given
query condition and the contents of the database are all crisp. A query is
flexible if the databases contain imprecise and uncertain information and the
query condition is imprecise and uncertain. For the fuzzy object-oriented
databases, it has been shown above that objects belong to a given class with
membership degree [0, 1]. In addition, an object satisfies the given query
condition also with membership degree [0, 1] because fuzzy information
occur in the query condition and/or the object. Therefore, the query
processing based the proposed fuzzy object-oriented database model refers
to such procedure that the objects satisfying a given threshold and a given
condition under given thresholds simultaneously are selected from the
classes. It is clear that the queries for the fuzzy object-oriented databases are
threshold-based ones, which are concerned with the number choices of
threshold. Therefore, an SQL like query syntax based on the fuzzy object-
oriented database model is represented as follows.

SELECT <attribute list> FROM <Class; WITH threshold,, ..., Class,
WITH threshold,>> WHERE <query condition WITH threshold>

Here, <query condition> is a fuzzy condition and all thresholds are crisp
numbers in [0, 1]. Utilizing such SQL, one can get such objects that belong
to the classes under the given thresholds and also satisfy the query condition
under the given thresholds at the same time. Note that the item WITH
threshold can be omitted. The default of threshold is exactly 1 at this
moment.
Assume we have a fuzzy class Young Students as follows.
CLASS Young Students WITH DEGREE OF 1.0
INHERITS Students WITH DEGREE OF 1.0
ATTRIBUTES
ID: TYPE OF string WITH DEGREE OF 1.0

184 Chapter 9

Name: TYPE OF string WITH DEGREE OF 1.0
Age: FUZZY DOMAIN {very young, young, old, very old}: TYPE OF integer
WITH DEGREE OF 1.0
Height. DOMAIN [60, 210]. TYPE OF real WITH DEGREE OF 1.0
Membership_Attribute name
WEIGHT
w (ID) = 0.1
w (Name) = 0.1
w (Age) = 0.9
w (Height) = 0.2
METHODS

CONSTRAINTS

END
A query based on the class may be

SELECT Yong Students.Height FROM Yong Students WITH 0.5
WHERE Yong Students.Age = very young WITH (.8.

This query is to get the young students objects that have membership degree
equal to or greater than 0.5 and have very young age with a membership
degree equal to or greater than 0.8. The height values of the selected objects
are provided to the users. Assume that we now have three objects of Yong
Students: o1, 02, and 03 and they have membership degrees 0.4, 0.6, and 0.7,
respectively. It is clear that ol does not satisfy the query because its
membership degree to Young Students is 0.4, which is less than the given
threshold 0.5. Objects 02 and 03 may or may not satisfy the query,
depending on if their ages are very young under the given threshold 0.8.

9.7 Summary

Incorporation of imprecise and uncertain information in database model
has been an important topic of database research because such information
extensively exists in data and knowledge intensive application such as expert
system, decision making, and CAD/CAM etc. Besides, that there are
complex object structures is another characteristics of these systems.
Classical relational database model and its extension of imprecision and
uncertainty do not satisfy the need of handling complex objects with
imprecision and uncertainty. Fuzzy object-oriented databases are hereby
introduced. Furthermore, there have been several investigations into
complex applications with uncertainty in the database models based on the

9. The Fuzzy Object-Oriented Databases 185

fuzzy OODB. To handle complex data and knowledge with uncertainty, in
(Koyuncu, Yazici and George, 1999), an intelligent fuzzy object-oriented
database (IFOOD) architecture was proposed, in which fuzzy object-oriented
databases (FOODB) were coupled with fuzzy knowledge bases (FKB)
through a bridge that provides interoperability. Here, the FOODB is used to
handle large scale of complex and fuzzy data and the KB is used to handle
imprecise knowledge of the application domain. The evaluation of imprecise
queries in the IFOOD was presented in (Koyuncu, Yazici and George,
2000). It should be noted that the FOODB in the IFOOD (Koyuncu, Yazici
and George, 1999; Koyuncu, Yazici and George, 2000) comes from the
similarity-based object-oriented databases in (Yazici, George and Aksoy,
1998).

In this chapter, based on possibility distribution and the semantic
measure method of fuzzy data, we presented a fuzzy object-oriented
database model (FOODBM) to cope with imperfect as well as complex
objects in the real world at a logical level. Some major notions such as
objects, classes, objects-classes relationships, subclass/superclass, and
multiple inheritances in fuzzy object-oriented databases have been extended
under fuzzy information environment. Finally, a generic model for fuzzy
object-oriented databases is proposed. The FOODBM framework proposed
here differs from the FOODB framework proposed in (Koyuncu, Yazici and
George, 1999; Koyuncu, Yazici and George, 2000; Yazici, George and
Aksoy, 1998) in two aspects: first, the way that uncertainty is represented
and second, the calculations of fuzzy object-class relationship and fuzzy
subclass/superclass relationship.

References

Bordogna, G., Pasi, G. and Lucarella, D., 1999, A fuzzy object-oriented data model for
managing vague and uncertain information, International Journal of Intelligent Systems,
14: 623-651.

Chen, S. M. and Jong, W. T., 1997, Fuzzy query translation for relational database systems,
IEEE Transactions on Systems, Man and Cybernetics—Part B: Cybernetics, 27 (4): 714—
721.

Cross, V., de Caluwe, R. and Vangyseghem, N., 1997, A Perspective from the fuzzy object
data management group (FODMG), Proceedings of the 1997 IEEE International
Conference on Fuzzy Systems, 2: 721-728.

Cross, V. and Firat, A., 2000, Fuzzy objects for geographical information systems, Fuzzy Sets
and Systems, 113: 19-36.

de Tre, G. and de Caluwe, R., 2005, A constraint based fuzzy object oriented database model,
Advances in Fuzzy Object-Oriented Databases: Modeling and Applications, Edited by
Zongmin Ma, Idea Group Publishing.

Dubois, D., Fargier, H. and Prade, H., 1996, Possibility theory in constraint satisfaction
problems: handling priority, preference and uncertainty, Applied Intelligence, 6 (4): 287-
309.

186 Chapter 9

Dubois, D., Prade, H. and Rossazza, J. P., 1991, Vagueness, typicality, and uncertainty in
class hierarchies, International Journal of Intelligent Systems, 6: 167-183.

George, R., Srikanth, R., Petry, F. E. and Buckles, B. P., 1996, Uncertainty management
issues in the object-oriented data model, IEEE Transactions on Fuzzy Systems, 4 (2): 179-
192.

Gyseghem, N. V. and de Caluwe, R., 1998, Imprecision and uncertainty in UFO database
model, Journal of the American Society for Information Science, 49 (3): 236-252.

Koyuncu, M., Yazici, A. and George, R., 1999, IFOOD: An intelligent object-oriented
database architecture, Proceedings of the 10th International Conference on Database and
Expert Systems Applications, Lecture Notes in Computer Science 1677 Springer 1999, 36-
45,

Koyuncu, M., Yazici, A. and George, R., 2000, Flexible querying in an intelligent object-
oriented database environment, Proceedings of the 4th International Conference on
Flexible Query Answering Systems, 75-84.

Liu, W. Y. and Song, N., 2001, The fuzzy association degree in semantic data models, Fuzzy
Sets and Systems, 117 (2): 203-208.

Ma, Z. M. and Mili, F., 2002, Handling fuzzy information in extended possibility-based fuzzy
relational databases, International Journal of Intelligent Systems, 17 (10): 925-942.

Miguel, 1. and Shen, Q., 2001, Solution techniques for constraint satisfaction problems:
advanced approaches, Artificial Intelligence Review, 15 (4): 269-293.

Mili, F.,, 2000, Managing engineering knowledge federations, Industrial Knowledge
Management-A Micro Level Approach, Edited by R. Roy, Springer Verlag, London, 513-
524,

Ruttkay, Z., 1994, Fuzzy constraint satisfaction, Proceedings of the 1994 International
Conference on Fuzzy Systems, 2: 1263 —1268.

Vila, M. A, Cubero, I. C., Medina, J. M. and Pons, O., 1996, A Conceptual approach for deal
with imprecision and uncertainty in object-based data models, nternational Journal of
Intelligent Systems, 11: 791-806.

Yazici, A., George, R. and Aksoy, D., 1998, Design and implementation issues in the fuzzy
object-oriented data model, Information Sciences, 108 (1-4): 241-260.

Yazici, A., Soysal, A., Buckles, B. P. and Petry, F. E., 1999, Uncertainty in a nested relational
database model, Data & Knowledge Engineering, 30 (3): 275-301.

Zicari, R. and Milano, P., 1990, Incomplete information in object-oriented databases, ACM
SIGMOD Record, 19 (3): 5-16.

Chapter 10
CONCEPTUAL DESIGN OF FUZZY DATABASES

10.1 Introduction

Information modeling in databases can be carried out at two different
levels: conceptual data modeling and logical database modeling. Therefore,
we have conceptual data models and logical database models for database
modeling, respectively. Conceptual data models are generally used for
information modeling at a high level of abstraction. However, information
systems are constructed based on logical database models. So at the level of
data manipulation, i.e., a low level of abstraction, logical database models
are used for information modeling. Here, logical database models are often
created through mapping conceptual data models into logical database
models. This conversion is called conceptual design of databases.

There have been several proposals for extending relational database
model as well as nested relational database model in order to represent and
query fuzzy data. Current efforts have been concentrated on fuzzy object-
oriented databases and some related notions. Compared with the studies of
the fuzzy database models, little work has been done in modeling
imprecision and uncertainty in conceptual data model. It is particularly true
in developing design methodologies for implementing fuzzy databases. To
fill this gap, this chapter proposes the conceptual designs of the fuzzy nested
relational databases using the fuzzy EER model and the fuzzy object-
oriented databases using the fuzzy UML model. Also the mapping of the
fuzzy XML model into the fuzzy relational database model is investigated in
this chapter.

188 Chapter 10

10.2 Transformation from the Fuzzy EER Model to the
Fuzzy Nested Relational Databases

The transformations of the fuzzy ER data model to the fuzzy relational
databases have been investigated in (Chaudhry, Moyne and Rundensteiner,
1999). The techniques for mapping the fuzzy EER model to the fuzzy
relational databases were proposed and a sequence of steps to implement a
fuzzy RDB from the extended fuzzy ER model was prescribed. It should be
pointed out, however, being the extension of relational data model, NF? data
model is able to handle complex-valued attributes and may be better suited
to some complex applications such as office automation systems,
information retrieval systems and expert database systems (Yazici, Soysal,
Buckles and Petry, 1999). In (Yazici, Buckles and Petry, 1999), based on
similarity relations (Buckles and Petry, 1982), the IF'O model, which was
proposed in (Abiteboul and Hull, 1987) as a formally defined conceptual
database model that comprises a rich set of high-level primitives for database
design, was extended to the Ex/FO (Extended IFO) model to represent
uncertainties at the levels of the attribute, the object, and class. Also a
mapping process to transform the ExIFO model into the fuzzy extended NF
relations including uncertain properties that are represented in both models
was also described in (Yazici, Buckles and Petry, 1999).

In Chapter 4 and Chapter 8, the EER and nested relational models have
been extended, respectively, using the possibility-distribution theory. In
order to transform the fuzzy EER model into the fuzzy nested relational
database model, first of all, we should know how the fuzzy nested relational
databases support the fuzzy EER model. As described in Chapter 4, three
levels of fuzziness can be found in the fuzzy EER model, in which the first
level of fuzziness occurs in metadata. The fuzzy nested relational databases
do not support this level of fuzziness, which only model the fuzziness that
occurs in type/instance and instance levels (i.e., attribute values). In addition,
generally speaking, an entity in the EER model corresponds to a relation in
the nested relational databases and each entity instance is mapped into a
tuple of the relation. Correspondingly, the attributes of the entity correspond
to the attributes of the relation. A relationship in the EER model can be
mapped into the attributes of the relations that are created by the entities
connected with the relationship.

Subtype/supertype entities in the EER model can be implemented in
relational databases via the reference relationships between relations. It is
clear that, based on such organization principles, the instances related to the
structural relationships one another are represented in separate relational
databases. In order to obtain some information, one may have to query
multiple relational databases by using join operations. Besides, it is very

10. Conceptual Design of Fuzzy Databases 189

hard to have a complete and clear picture about information model from the
query answers. Relational databases obviously are not suitable to support the
EER model. The reason is because of the restriction of first normal form
(INF) in traditional relational databases. Nested relational databases can
solve this problem very well.

10.2.1 Transformation of Entities

Generally speaking, entities in the fuzzy EER model are transformed to
relations in the fuzzy nested relational databases and the attributes of entities
may be considered as that of the corresponding relation directly. Note that
multivalued attributes the fuzzy EER model are mapped into set-valued
attributes in the fuzzy nested relational databases. We can distinguish four
kinds of entities in the fuzzy EER model as follows:

(a) entities without any fuzziness at the three levels,

(b) entities with the fuzziness only at the third level,

(c) entities with the fuzziness at the second level, and

(d) entities with the fuzziness at the first level.

For the first two kinds of entities, we can directly transform the entities
into relations. For the third kind of entities, however, an additional attribute
should be added to each relation transformed from the corresponding entity,
which is used to denote the possibility that the tuples belong to the relation.
It should be noted that for the entities with membership degree and the
entities whose attributes have membership degree, the fuzzy nested
relational model couldn’t model the first level of fuzziness.

Notice that the entities mentioned above are not subclass entities, which
mapping will be discussed below. In addition, a weak entity in the fuzzy
EER model depends on its owner entity. A weak entity in FEER model can
be mapped to a relation-valued attribute.

Figure 10-1 shows the transformation of entities.

Good Partner
Site , State I pD ’

Figure 10-1. Transformation of the Entities in the Fuzzy EER to the Fuzzy Nested Relational
Databases

190 Chapter 10
10.2.2 Transformation of Relationships

A relationship in the EER model should be mapped into an association
relation, which attributes serve as a group of pointer to combine an explicit
reference from one tuple to another tuple. Considering the constraint of
cardinality, such attributes in two associated tuples can be single-valued one
or multivalued one.

Let entity £1 with attributes {K1, 41, ..., Am} and entity E2 with
attributes {K1, B1, ..., Bn} be connected with relationship R {X1, ..., Xk},
where K1 and K2 are, respectively, key attributes of £1 and £2, and R may
be one-to-one, one-to-many, or many-to-many relationship. In addition to
the transformation processing given in the entity transformation discussion
before, the relationship R is mapped into a relational schema with attribute
set {K1, K2, X1, ..., Xk}, where K1 and K2 are key attributes. If the
constraint of cardinality is a one-to-many relationship, i.e., R is a one-to-
many relationship from E1 to E2, K2 is a set-valued attribute in 71 created by
E1, and K1 is a single-valued attribute in 72 created by E2.

Considering the fuzziness in the fuzzy EER model, we can distinguish
four kinds of relationships as follows:

(a) relationships without any fuzziness at the three levels,

(b) relationships with the fuzziness only at the third level (it means that

the attributes of relationships may take fuzzy values),

(c) relationships with the fuzziness at the second level, and

(d) relationships with the fuzziness at the first level.

(: >+;"'}zi"'1~—:\" ar) 7l
.___l_-_‘ N |k | a1 | pp |

270N Pt Iz

Rlz\:\/—\'\,X oo |kl k | x|]

N7 it r2

(ma o [0
i B2 Bl)
PR 1 N ,’
Figure 10-2. Transformation of the Relationships in the Fuzzy EER to the Fuzzy Nested
Relational Databases

For the relationship R in case (a) or (b), the transformation of the
relationships can be conducted according to the rules given above. For the
relationship R in case (c), additional attributes denoting the possibility that
the relationship instances belong to the relation should be added the relation
r created by R. It should be noted that for the relationships with membership

10. Conceptual Design of Fuzzy Databases 191

degree and the relationships whose attributes have membership degree,
fuzzy nested relational model cannot model the first level of fuzziness and
the transformation of such relationships is not complete.

Figure 10-2 shows the transformation of relationships.

10.2.3 Transformation of Generalizations

Let F1 with attribute types named Ki, 41, A2, ..., and Ak and E> with
attribute types named K2, B1, B2, ..., and Bm be generated to supertype S.
Assume {A1, A2, ..., A} N {B1, B2, ..., Bm} = {C1, (3, ..., Ca}. Generally
speaking, E1 and E2 are mapped into schemas {K1, 41, A2, ..., A} — {C1, C2,
eory Co} and {K2, B, B2, ..., Bm} — {C1, (1, ..., Ch}, respectively. As to the
transformation of S, depending on Ki and K2, we distinguish the following
two cases.
(a) Ki and K> are identical. Then S is mapped into the schema {K, Ci, (2,
..., Cn}, where K is K1 or K2.

(b) K1 and K> are different. Then S is mapped into the relational schema
{K, C1, (1, ..., Cu}, where K is the surrogate key created by Ki and
K> (Yazici, Buckles and Petry, 1999).

I |
!
b ——. —
E @ Owner
e \‘ Number | Address | pD
tod
re - I Address
Person
Number Sex pD
=

Company Company
Number BossName

L
- N

BossName)
J

\\ T

—— e

Figure 10-3. Transformation of the Generalizations in the Fuzzy EER to the Fuzzy Nested
Relational Databases

Considering the fuzziness in the entities, the following cases for the
transformation of generalization are distinguished.

(a) E1 and E» are crisp. Then E1 and E2 are transformed to relations 71

and r2 with attributes {K1, 41, A2, ..., Ax} — {C1, (2, ..., Cu} and {K2,

Bi, By, ..., Bm} — {C1, (3, ..., Cn}, respectively. S is transformed to a

192 Chapter 10

relation » with attributes {K, C1, C2, ..., Cu} just like the discussion
above.

(b) When there is the fuzziness of type/instance level in E1 and (or) £,
being similar to case (a) also, relation », as well as relations 71 and r2,
are formed. Note that 7, »1 and (or 72) created by £1 and (or) E2 with
the type/instance level of fuzziness should include the attribute pD.

(¢) When there is the fuzziness of schema level in £1 and (or) £, relation
¥, as well as relations »1 and r2, is formed. But the fuzziness at this
level cannot be modeled in the created relations.

Figure 10-3 shows the transformations of generalization.

10.2.4 Transformation of Specializations

Let S be an entity type with # attributes named K, A1, A2, ..., and 4n,
where K is its key. Let an entity type S1 with attributes named A1, A1z, ...,
and A1 and an entity type S2 with attributes named 421, 422, ..., and 42m be
the subclasses of S. Since S1 and 52 are the subclasses of S, there are no keys
in S1 and S2. At this point, S is mapped into the relational schema {K, 41, 42,
..., An}, and S1 and S2 are mapped into schemas {K, A1, 41, ..., Ai} and
{K, A21, An, ..., Aam}, respectively.

Figure 10-4 shows the transformation of specialization.

Engine

SN Number Model

! \
L d |
i Plane Engine

- Number | Name | Usage | pD
I—'— - -
| Plane Engine : Car Engine Car Engine
l Number | Rate Designer
///”. TN
(Designer /\
\\ //

——— s

Figure 10-4. Transformation of the Specializations in the Fuzzy EER to the Fuzzy Nested
Relational Databases

10. Conceptual Design of Fuzzy Databases 193
10.2.5 Transformation of Categorizations

Categorization is concerned with the issue of selective inheritance.
Essentially, categorization shows the uncertainty that which entity in the
categorization will take place in the schema is not known currently. The
entities, fuzzy or not, in the categorization can respectively be mapped into
relations following the methods given above. The categorization entity also
follows the transformation. Some additional attributes, however, should be
added into the corresponding relation. These attributes are a set of all
attributes of the entities in the categorization.

Engine

T

//—- —‘\\
e \)
i (Size
EnginelD N P
_-”/

Car
Chassis Engine

CarD ™ CpassisID | Model EnginelD Size

Name | pD

Figure 10-5. Transformation of the Aggregations in the Fuzzy EER to the Fuzzy Nested
Relational Databases

10.2.6 Transformation Aggregations

Each aggregation in the fuzzy EER mode!l can be mapped into a relation
of the fuzzy nested relational schema with relation-valued attributes.
Depending on the component entities, the aggregation entity may be crisp or
fuzzy. As we know, there are four kinds of entities in the fuzzy EER model.
Fuzziness of the component entities only on the attribute values does not
influence the relation created by the aggregation entity. If there exists the
fuzziness of the component entities at type/instance level, namely, one at the
second level, however, an additional attribute must be appended to the

194 Chapter 10

relation created by the aggregation entity, indicating the aggregation degree
of tuples. The fuzziness of the component entities at type level, i.e., one at
the first level, however, cannot be modeled in the relation created by the
aggregation entity.

Figure 10-5 shows the transformations of aggregation.

10.3 Transformation from the Fuzzy UML Model to the
Fuzzy Object-Oriented Databases

In (Fong, 1995), some transformation rules have been presented to map
object-oriented data model into the object-oriented database model. Based
on these basic transformation rules, the formal transformation from the fuzzy
EER to the fuzzy object-oriented databases has been developed in (Ma,
Zhang, Ma and Chen, 2001). The UML reflects some of the best OO
modeling experiences available. Therefore, this section discusses the
conceptual design of fuzzy object-oriented databases presented in Chapter 9
using the fuzzy UML model presented in Chapter 5.

It is noticed that, not being the same as the fuzzy relational and nested
relational databases, the fuzzy object-oriented databases support the first
level of fuzziness of the fuzzy conceptual models (ER/EER and UML) in
addition to the first and second level of fuzziness. The fuzzy relational and
fuzzy nested relational databases only support the fuzziness at the level of
type/instance (the second level) and the fuzziness at the level of instance (the
third level).

10.3.1 Transformation of Classes

The classes in the UML data model, in general, correspond to the classes
in the object-oriented databases and the attributes of the classes in the UML
model correspond to the attributes of the classes in the object-oriented
databases. If the classes in the UML data model are subclasses or
superclasses, in the object-oriented databases, the inheritance hierarchies of
the classes produced by these UML classes must be indicated explicitly.

For the purpose of the transformation from the fuzzy UML model into
the fuzzy object-oriented databases, first we suppose that the classes in the
UML model are neither subclasses nor superclasses. Then we can distinguish
four kinds of classes in the fuzzy UML model as follows:

(a) classes without any fuzziness at the three levels,

(b) classes with the fuzziness only at the third level,

(c) classes with the fuzziness at the second level, and

(d) classes with the fuzziness at the first level.

10. Conceptual Design of Fuzzy Databases 195

While transforming the classes of the fuzzy UML model into the classes of
the fuzzy object-oriented databases and the attributes of the former classes
into the attributes of the later classes, the transformation of the classes with
three levels of fuzziness are of particularly concern. For the classes in case
(b), their attributes taking fuzzy values must be indicated in the transformed
classes in the fuzzy object-oriented databases that these attributes have fuzzy
value types, denoted by FUZZY TYPE OF. For the classes in case (c), an
additional attribute, denoted by pD, should be added into each class
transformed from the corresponding class in the fuzzy UML model, which is
used to denote the possibility that the class instances belong to the class. For
the classes in case (d), the classes or/and their attributes may be associated
with membership degrees. Correspondingly, the transformed classes and
attributes in the fuzzy object-oriented databases are associated with the
membership degrees, if any. The membership degree is used to indicate the
possibility that the created class belongs to the corresponding database
model, or the attributes of the created class belong to the class.

Figure 10-6 shows the transformation of the classes in the fuzzy UML
data models to the fuzzy object-oriented databases. For the sake of
simplification, some components in the class definition of the fuzzy object-
oriented databases such as DOMAIN, WEIGHT, METHODS, and
CONSTRAINTS are not listed in the following definitions.

:'"_"""""""""": CLASS Good Partner

i Good Partner : ATTRIBUTES

' Id H Id: TYPE OF String

' Site N Site: TYPE OF String

' FUZZY State , State: FUZZY TYPE OF String

- ' pD: DOMAIN [0, 1] TYPE OF number

; : END
CLASS Office Chair WITH DEGREE 0.6

Office Chair WITH 0.6 DEGREE ATTRIBUTES

Code Code: TYPE OF String

X = Weight: TYPE OF Number WITH

Weight WITH 0.5 DEGREE DEGREE OF 0.5

FUZZY Color Color: FUZZY TYPE OF String
END

Figure 10-6. Transformation of the Classes in the Fuzzy UML to the Fuzzy Object-Oriented
Databases

Now assume that the classes of the fuzzy UML model are superclasses,
which may be any of the classes listed in cases (a)-(d) above. Then the
transformation of such classes into the classes of the fuzzy object-oriented
databases is the same as the transformation of the classes of the fuzzy UML

196 Chapter 10

model given above. As to the classes of the fuzzy UML model that are
subclasses and may be any of the classes listed in cases (a)-(d) above, they
can be transformed into the classes of the fuzzy object-oriented databases
following the same principles of the class transformation given above. But,
in the fuzzy object-oriented databases, the inheritance hierarchies of the
produced classes (subclasses) must be indicated explicitly.

Figure 10-7 shows the transformation of the subclasses in the fuzzy UML
data models to the fuzzy object-oriented databases.

CLASS Youth
ATTRIBUTES

pD: DOMAIN [0, 1] TYPE OF number
END

: Youth ‘ CLASS Young Student
S I INHERIT Youth

A}
o = ATTRIBUTES
I l pD: DOMAIN [0, 1] TYPE OF number
---------------- END

1

! Young i Young
1
:

CLASS Young Faculty
------------------ ' INHERIT Youth
ATTRIBUTES

pD: DOMAIN [0, 1] TYPE OF number
END

Figure 10-7. Transformation of the Subclasses in the Fuzzy UML to the Fuzzy Object-
Oriented Databases

10.3.2 Transformation of Aggregations

An aggregation specifies a whole-part relationship between an aggregate-
a class that represents the whole-and a constituent part. In the fuzzy UML
model, the (fuzzy or not) aggregate can be transformed into a class in the
fuzzy object-oriented databases, called aggregation class, according to the
transformation of classes given above. The constituent part, being a (fuzzy or
not) class, can also be transformed into a class in the fuzzy object-oriented
databases, called component class. It should be noticed that, however, the
attributes of the aggregation class consist of all attributes from the aggregate
as well as its all component classes as complex class attributes.

Figure 10-8 shows the transformation of the aggregations in the fuzzy
UML data models to the fuzzy object-oriented databases.

10. Conceptual Design of Fuzzy Databases 197

CLASS 0ld Car

ATTRIBUTES
Old Engine
CD Player WITH 0.4 DEGREE
Chassis

pD: DOMAIN [0, 1] TYPE OF number
END

i1 OldCar | CLASS Old Engine
- b ' ATTRIBUTES

— pD: DOMAIN [0, 1] TYPE OF number
[~ | END

i Old Engine | Chassis
"""""" ' CLASS CD Player WITH 0.4 DEGREE

ATTRIBUTES

0.4/CD Player

END

CLASS Chassis
ATTRIBUTES

END

Figure 10-8. Transformation of the Aggregations in the Fuzzy UML to the Fuzzy Object-
Oriented Databases

10.3.3 Transformation of Associations

An association in the UML model should be transformed into an
association in the OO schema, which describes a group of pointer as an
attribute in an object that combines an explicit reference to another object.
Considering the constraint of cardinality, such attributes in two associated
objects can be single-valued one or multivalued one. In the fuzzy UML
model, three kinds of associations can be distinguished as follows:

(a) associations without any fuzziness at the three levels,

(b) associations with the fuzziness at the second level, and

(c) associations with the fuzziness at the first level.

Let class C; and class C, be connected with association relationship R,
where R may be one-to-one, one-to-many, or many-to-many relationship.
Also assume that C; and C, have such attributes, say K1 and K2, whose
values serve as the object identification, respectively. Then, following the
transformation process of the classes given above, C; and C, can be
transformed into the classes in the fuzzy object-oriented databases. However,

198 Chapter 10

the influence of R and C, (or () to C; (or C;) must be considered when C;
(or (3) is transformed to a class of the fuzzy object-oriented databases. K,
(or K;) should be added into the class C*; (or C’;) created by C; (or Cy) as a
foreign key just like the relational databases. If the constraint of cardinality
is a one-to-many relationship, i.e., R is a one-to-many relationship from C; to
C,, K, is a multivalued attribute in C*, and X is a single-valued attribute in
C.

For relationship R in case (b), the possibility that a relationship instance
belongs to R should be mapped into the possibility that an object instance
belong to C”; or C*,. Therefore, additional attributes denoting the possibility
that the class instances belong to the class should be added to C’; and C’,,
respectively. For relationship R in case (c¢), i.e., the relationships with
membership degree pn, however, K; in C’; and K, in C’, should be the
attributes with membership degree p, indicating the possibility that the
foreign key is included for the created class.

Figure 10-9 shows the transformation of associations.

i | LL¥g @7 777""5
FoCl ::.::::::::::::*l: 2 i
o = = 1 e 1
U
CLASS CLASS ¢,
ATTRIBUTES ATTRIBUTES
K]'. Kzi
K,: DOMAIN set values Ky: DOMAIN single values
pD: DOMAIN [0, 1] TYPE OF number pD: DOMAIN [0, 1] TYPE OF number
END END
R WRYR 1.* [
E C1 }::::::::::::::h 2 :
_______ 1 | S —]
U
CLASS ¢ CLASS ,
ATTRIBUTES ATTRIBUTES
Kl: Kz:
K> WITH u DEGREE: DOMAIN set Ky WITIT uy DEGREE: DOMAIN set
values values
fD: DOMAIN [0, 1] TYPE OF number pD: DOMAIN [0, 1] TYPE OF number
END END

Figure 10-9. Transformation of the Associations in the Fuzzy UML to the Fuzzy Object-
Oriented Databases

10. Conceptual Design of Fuzzy Databases 199

10.4 Mapping the Fuzzy XML Model into the Fuzzy
Relational Database Model

XML is becoming the de facto standard for data description and
exchange between various systems and databases over the Internet. To store,
query and update XML documents, it is necessary to integrate XML and
databases (Bertino and Catania, 2001). Concerning the kind of databases
used for the integration, one can distinguish four different approaches
(Kappel et al., 2000).

e Special-purpose databases which are particularly tailored for
processing XML documents (Goldman, McHugh and Widom, 1999;
Kanne and Moerkotte, 2000);

o Object-oriented databases which are well-suited for storing XML
documents (Chung et al., 2001; Johansson and Heggbrenna, 2003);

o Object-relational databases which would be also appropriate for
mapping to and from XML document (Surjanto, Ritter and Loeser,
2000; Runapongsa and Patel, 2002);

e Relational databases which might be the more promising alternative
because of the widespread use and mature techniques (Lee and Chu,
2000; Kappel et al., 2000; Du, Amer-Yahia and Freire, 2004).

To store XML documents within databases, the approach to mapping of
XML to databases is extensively applied, where the structure of XML
documents (XML DTD or XML Schema) is mapped into a corresponding
database schema and XML documents are stored according to the mapping.
In the following, we describe the mappings of the fuzzy XML DTD to the
fuzzy relational database model.

104.1 DTD Tree and Mapping to the Relational Database Schema

The hierarchical XML and the flat relational data models are not fully
compliant. So the transformation is not a straightforward task. Generally a
DTD tree can be created from the hierarchical XML DTD. Its nodes are
elements and attributes, in which each element appears exactly once in the
graph, while attributes appear as many times as they appear in the DTD. The
element nodes can be further classified into two kinds: leaf element nodes
and nonleaf element nodes. So in the DTD tree, we totally have three kinds
of nodes, which are attribute nodes, leaf element nodes and nonleaf element
nodes. Note that there exists a special nonleaf element node in the DTD tree,
i.e., root node. In addition, we also need to identify such attribute nodes that
the corresponding attributes are associated with ID #REQUIRED or IDREF
#REQUIRED in DTD. We call these attribute nodes key attribute nodes.

200 Chapter 10

A DTD tree can be constructed when parsing the given DTD
(Shanmugasundaram et al., 1999). Figure 10-10 shows a simple DTD tree
example.

university

department
employee @

attribute node

O leaf element node nonleaf element node

Figure 10-10. A Simple DTD Tree

key attribute node

The created DTD tree is then mapped into the relational schema

following the processing as follows.

(a) Take the root node of the given DTD tree and create a relational table.
Its attributes come from the attribute nodes and leaf element nodes
connecting with the root node. Here the key attribute node(s) should
become the primary key attribute(s) of the created table.

(b) For each nonleaf element node connecting with the root node, create
a separate relational table. Its attributes come from the attribute nodes
and leaf element nodes connecting with this nonleaf element node,
and its primary key attribute(s) will come from the key attribute
node(s).

(c) For other nonleaf element nodes in the DTD tree, apply the same
processing given in (b) until all nonleaf element nodes are
transformed.

Note that sometimes we need to link a created relational table to its parent
relational table through the parent table's primary key.

10. Conceptual Design of Fuzzy Databases 201

The DTD tree in Figure 10-10 is mapped into the relational schemas
shown in Figure 10-11.

university employee

UName address EID ename | position office
department student

DName location SID sname sex age

Figure 10-11. The Relational Schema Created by the DTD Tree in Figure 10-10

It should be pointed out that, however, the above-mentioned mapping of
XML DTD to the relational schema using the DTD tree puts a focus on
structural aspects of transformation.

10.4.2 Mapping the Fuzzy XML Model into the Fuzzy Relational
Database Model

Generally speaking, the fuzzy XML DTD presented in Chapter 6 can be
transformed into the fuzzy relational database schema using a similar
processing given above under classical environment. That is, we first
construct a DTD tree through parsing the given fuzzy DTD and then map the
DTD tree into the fuzzy relational database schema. However, the DTD tree
here, called the fuzzy DTD tree, is clearly different from the classical DTD
tree above because the fuzzy DTD contains new attribute and element types,
which are attribute Poss and elements Val and Dist. As a result, the
transformation of the fuzzy DTD tree to the fuzzy relational database schema
is also different from the transformation of the classical DTD tree to the
classical relational database schema.

In the fuzzy DTD tree, in addition to (key) attribute nodes, leaf element
nodes and nonleaf element nodes, there are three special nodes, which are
Poss attribute nodes, Val element nodes, and Dist element nodes. Figure 10-
12 shows a simple fuzzy DTD tree that basically comes from the fuzzy DTD
in Figure 6-2. In this fuzzy DTD tree, the Dist element nodes created from
Disk elements are used to indicate the type of a possibility distribution, being
disjunctive or cownjunctive. In addition, each Dist element node has a Val
element node as its child node and a nonleaf element node as its parent node.
From the figure, we can also identify four kinds of Val element nodes as
follows.

(a) They do not have no any child node excepting the Poss attribute

nodes (type-1).

202 Chapter 10

(b) They only have leaf element nodes as their child nodes excepting the
Poss attribute nodes (type-2).

(c¢) They only have nonleaf element nodes as their child nodes excepting
the Poss attribute nodes (type-3).

(d) They have leaf element nodes as well as nonleaf element nodes as
their child nodes excepting the Poss attribute nodes (type-4).

university

address E Val

department

employee student

attribute node Poss attribute node

%]
Dist § Distelementnode ‘ E Vol element node

O leaf element node nonleaf element node

Figure 10-12. A Simple Fuzzy DTD Tree

In the following, we describe the transformation of the fuzzy DTD tree
into the fuzzy relational database schema. Being different from the

10. Conceptual Design of Fuzzy Databases 203

transformation of the classical DTD tree to the relational database schema, in
the transformation of the fuzzy DTD tree to the fuzzy relational model, the
Poss attribute nodes, Val element nodes, and Dist element nodes in the fuzzy
DTD tree do not take part in composing the created relational schema and
only determine the model of the created fuzzy relational databases. In
details, we have the following the processing.

(a) Take the root node of the given fuzzy DTD tree and create a relational
table. Its attributes first come from the attribute nodes and leaf
element nodes connecting with the root node. Here the key attribute
node(s) should become the primary key attribute(s) of the created
table. Then determine if the root node has any Val element nodes or
Dist element nodes as its child nodes. If yes, we need to further
determine the type of each Val element node (we can ignore Dist
element nodes because each Dist element node must has a Val
element node as its child node only).

(i) If it is the Val element node of type-2, all of the leaf element
nodes connecting with the Val element node become the
attributes of the created relational table. Also an additional
attribute is added into the created relational table, representing
the possibility degree of the tuples.

(ii) If it is the Val element node of type-3, only an additional
attribute is added into the created relational table, representing
the possibility degree of the tuples.

(iii) If it is the Val element node of type-4, we leave the nonleaf
element nodes for further treatment in (b) and do the same thing
as (i) for the leaf element nodes.

It is impossible that the Val element nodes of type-! arise in the root

node.

(b) For each nonleaf element node connecting with the root node, create
a separate relational table. Its attributes come from the attribute nodes
and leaf element nodes connecting with this nonleaf element node,
and its primary key attribute(s) will come from the key attribute
node(s). Furthermore, determine if this nonleaf element node has any
Val element nodes or Dist element nodes as its child nodes and
identify the type of these nodes, if any. We still apply the processing
given in (i)-(iii) of (a) to treat the Val element nodes of type-2, type-
3, and type-4. For the Val element nodes of type-1, each of them
should become an attribute of another relational table created from
the parent node of the current nonleaf element. Note that this
attribute is one that may take fuzzy values.

204 Chapter 10

(¢) For other nonleaf element nodes in the fuzzy DTD tree, apply the
same processing given in (b) until all nonleaf element nodes are
transformed.

The fuzzy DTD tree in Figure 10-12 is mapped into the fuzzy relational

schemas shown in Figure 10-13, in which attribute “age” is one that may
take fuzzy values.

university employee
UName | address | pD EID | ename | position | office pD
department student
DName location SID sname sex age

Figure 10-13. The Fuzzy Relational Schema Created by the Fuzzy DTD Tree in Figure 10-12

10.5 Summary

Conceptual data models are generally able to capture complex object and
semantic relationships at a high level of abstraction. At the level of data
manipulation, logical database models are used for data storage, processing,
and retrieval activities related to data management. Database modeling often
starts with conceptual data modeling and then the created conceptual data
models are transformed into logical database models.

Focusing on conceptual design of the fuzzy databases, this chapter
presents the transformation of the fuzzy EER and UML data models to the
fuzzy nested relational and fuzzy object-oriented database models. In
particular, with the fuzzy DTD tree, the transformation of the fuzzy XML
model to the fuzzy relational database model is proposed in this chapter.

References

Abiteboul, S. and Hull, R., 1987, IFO: A formal semantic database model, ACM Transactions
on Database Systems, 12 (4). 525-565.

Bertino, E. and Catania, B., 2001, Integrating XML and databases, /EEE Internet Computing,
July-August, 84-88.

Buckles, B. P. and Petry, F. E., 1982, A Fuzzy Representation of Data for Relational
Database. Fuzzy Sets and Systems, 7 (3): 213-226.

Chaudhry, N. A., Moyne, I. R. and Rundensteiner, E. A., 1999, An extended database design
methodology for uncertain data management, Information Sciences, 121 (1-2): 83-112.
Chung, T. S., Park, S., Han, S. Y. and Kim, H. J,, 2001, Extracting object-oriented database
schemas from XML DTDs using inheritance, Lecture Notes in Computer Science 2115,

49-59.

10. Conceptual Design of Fuzzy Databases 205

Du, F., Amer-Yahia, S. and Freire, J., 2004, ShreX: Managing XML documents in relational
databases, Proceedings of the 2004 International Conference on Very Large Data Bases,
1297-1300.

Fong, J., 1995, Mapping extended entity-relationship model to object modeling technique,
SIGMOD Record, 24 (3): 18-22.

Goldman, R., McHugh, J. and Widom, J., 1999, From semistructured data to XML: migrating
the Lore data model and query language, Proceedings of the 1999 International Workshop
on the Web and Databases, 25-30.

Johansson, T. and Heggbrenna, R., 2003, Importing XML Schema into an Object-Oriented
Database Mediator System, Master’s Thesis in Computer Science, Uppsala University,
Sweden.

Kanne, C.-C. and Moerkotte, G., 2000, Efficient storage of XML data, Proceedings of the
2000 International Conference on Data Engineering, 198-198.

Kappel, G., Kapsammer, E., Rausch-Schott, S. and Retschitzegger, W., 2000, X-Ray-towards
integrating XML and relational database systems, Lecture Notes in Computer Science
1920, 339-353.

Lee, D. and Chu, W. W., 2000, Constraints-preserving transformation from XML document
type definition to relational schema, Lecture Notes in Computer Science 1920, Springer,
323-338.

Ma, Z. M., Zhang, W. J., Ma, W. Y. and Chen, G. Q., 2001, Conceptual design of fuzzy
object-oriented databases using extended entity-relationship model, International Journal
of Intelligent Systems, 16: 697-711.

Naiburg, E. J. and Maksimchuk, R. A., 2001, UML for Database Design, Addison-Wesley
Professional (1st edition).

Runapongsa, K. and Patel, J. M., 2002, Storing and querying XML data in object-relational
DBMSs, Lecture Notes in Computer Science 2490, 266-285.

Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D. and Naughton, J., 1999,
Relational databases for querying XML documents: limitations and opportunities,
Proceedings of the 1999 International Conference on Very Large Data Bases, 302-314.

Surjanto, B., Ritter, N. and Loeser, H., 2000, XML content management based on object-
relational database technology, Proceedings of the First International Conference on Web
Information Systems Engineering, 1: 70-79.

Yazici, A., Buckles, B. P. and Petry, F. E., 1999, Handling complex and uncertain
information in the EXIFO and NF2 data models, [EEE Transactions on Fuzzy Systems, 7
(6): 659.676.

Yazici, A., Soysal, A., Buckles, B. P. and Petry, F. E., 1999, Uncertainty in a nested relational
database model, Data & Knowledge Engineering, 30 (3): 275-301.

Zvieli, A. and Chen, P. P, 1986, Entity-relationship modeling and fuzzy databases,
Proceedings of the 1986 IEEE International Conference on Data Engineering, 320-327.

INDEX

A

aggregation, 8, 10, 32, 62, 72, 90,
194, 197

alternate key, 23

ANSI/SPARC, 97

Armstrong’s axioms, 25

association, 11, 75, 91, 197

attribute, 4, 7, 12, 22, 31, 32, 36,
52, 68, 98, 152, 160, 189, 194,
200

attribute domain, 4, 22, 69, 71,
99, 112, 118, 134, 136, 143,
153, 162

B

Boyce-Codd normal form
(BCNF), 29

C

candidate key, 23, 29, 142
cardinality ratio constraint, 5, 58

Cartesian product, 23, 25, 31, 99,
114, 154, 170, 178

category, 8, 42

class, 9, 15, 33, 68, 88, 161, 194

class hierarchy, 160

closeness relation, 100

completeness, 112

comparison, 43, 114, 121, 133,
155,170, 173

composition, 10, 181

composite attribute, 4, 8, 58

conceptual data modeling, 3, 15,
27,51, 88, 187

conceptual data model, 3, 15, 27,
38,51, 67, 82, 88,159, 187

conflict, 33, 36, 131, 165, 172

conjunctive, 36, 58, 83, 177, 201

constraint, 5, 23, 32, 55, 169, 190,
197

D

data-centric document, 16

data compression, 126

data dependency, 24, 105, 110,
124, 126

208

database design, 3, 9, 23, 27, 105,
188

database conceptual design, 51

database integration, 25, 130

database management system
(DBMS), 21, 123

database modeling, 3, 9, 38, 187

database schema, 199

deletion operation, 123, 128

dependency, 11, 23, 77, 106

dependency-preservation, 30

difference, 25, 42, 113, 138, 154,
177

disjunctive, 36, 58, 60, 83, 85,
177, 201

division, 25,27, 116

domain integrity constraint, 23

document-centric document, 16

DTD tree, 199, 201

duplicate, 25, 104, 118

E

enhanced (extended) entity-
relationship (EER) model, 3,
7,58,67,188

entity, 4, 7, 23, 51, 59

entity identification, 141

entity integrity constraint, 23

entity-relationship diagram, 3

entity-relationship (ER) model, 3,
7,52

extension principle, 40, 104

F

flexible constraint, 169

flexible query, 119

foreign key, 23

functional dependency (FD), 24,
106

fuzzy aggregation, 62, 72

Index

fuzzy association, 75, 88, 161

fuzzy attribute, 58

fuzzy class, 68, 161

fuzzy category, 62

fuzzy DTD tree, 201

fuzzy ER/EER model, 52, 58, 188

fuzzy functional dependency
(FFD), 100, 105, 124

fuzzy logic, 35, 67,

fuzzy multivalued dependency
(FMVD), 106, 126

fuzzy NF’ relational databases,
151

fuzzy object, 160

fuzzy object-oriented databases,
159, 187

fuzzy operation, 119

fuzzy query, 114, 182

fuzzy relational databases, 98,
154, 188

fuzzy set (theory), 35, 51, 119,
155, 160

fuzzy XML, 82, 199

fuzzy UML, 67, 88, 194

G

general integrity constraint, 23
generalization, 7, 11, 33, 60, 69,
90, 191

H
hierarchical data model, 21
1

Imprecision and uncertainty, 35,
38,51, 153, 159

Incompatible key, 141

incomplete information, 36, 81,
120

Index

inheritance, 33, 71, 161, 167, 193
insertion, 123

integration, 130

intersection, 26, 41, 115

integrity constraints, 14, 23, 105

J
join, 25, 26, 115
K

Kernel, 39
key, 4, 23

L

logical database modeling, 3, 187
logical database model, 3, 21, 28,
187

M

markup language, 12

membership function, 38, 53, 175

membership degree,

modification, 54, 68, 82, 98, 133

multidatabase integration, 141

multiple inheritance, 33, 71, 169

multivalued attribute, 4, 36, 58,
189

multivalued dependency, 24, 108

multivalued logic, 122

N

natural join, 27, 116

nested relational databases, 30
network data model, 21, 151
non-first normal form (NF?), 30
non-prime attribute, 23

normal form, 29

null values, 36

0]

object (instance), 9, 32, 68, 160

object-relational database model,
21

object-oriented database model,
21, 159

Object Management Group
(OMQG), 8,

outerjoin, 25, 131

outerunion, 25, 131

P

partial participation, 5, 56

participation constraint, 5, 55

participation degree, 5

possibility distribution, 38, 58, 81,
97,152, 180

possibility theory, 38, 160

prime attribute, 21

primary key, 21

probability distribution, 37

project, 26, 115

proximity relation, 97

Q
query, 25, 119, 180
R

referential integrity constraint, 23
relation, 22

relation schema, 20

relational algebra, 25

relational database model, 19, 20
relationship, 4, 10, 51
relationship attribute, 5, 52
rename, 117

210
resemblance relation, 99

S

schema decomposition, 29

selection, 26, 114

semantic space, 101

semantic equivalence degree, 107,
173

semantic inclusion degree, 101,
173

semantic measure, 99

single-valued attribute, 6, 190

similarity relation, 97,

soft constraint, 170

specialization, 7, 33, 52, 60, 161,
192

SQL, 119, 183

Standard Generalized Markup
Language (SGML), 12

subclass, 7, 33, 52, 68, 90, 161

superclass, 7, 33, 52, 68, 90, 161

super key, 23

support, 39, 99

T

total participation, 5, 56

transitive functional dependency,
24

transitivity, 24, 99, 109

tuple, 22, 98, 152, 189

U
UML, 8, 67, 194

union, 8, 25, 41, 109, 112
update anomaly, 29, 106

Index
update, 25, 123

\%

weak entity, 5
X

XML (eXtensible Markup
Language), 3, 12, 81, 199

XML databases, 16,

XML document, 12, 82, 199

XML DTD, 13, 88, 199

XML schema, 13, 88

XML Schema, 13, 88,

Y
Z
Other
INF, 29
2NF, 29
3NF, 29
4NF, 30
SNF, 30
a-cut, 39

